Loading…
Comparison of wavelet transform and FFT methods in the analysis of EEG signals
In this study, whether the wavelet transform method is better for spectral analysis of the brain signals is investigated. For this purpose, as a spectral analysis tool, wavelet transform is compared with fast Fourier transform (FFT) applied to the electroencephalograms (EEG), which have been used in...
Saved in:
Published in: | Journal of medical systems 2002-06, Vol.26 (3), p.241-247 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-d025501b6640581adefd6cbe785a64922d978d79c3dd396997f728c3e5dad0483 |
---|---|
cites | |
container_end_page | 247 |
container_issue | 3 |
container_start_page | 241 |
container_title | Journal of medical systems |
container_volume | 26 |
creator | Akin, M |
description | In this study, whether the wavelet transform method is better for spectral analysis of the brain signals is investigated. For this purpose, as a spectral analysis tool, wavelet transform is compared with fast Fourier transform (FFT) applied to the electroencephalograms (EEG), which have been used in the previous studies. In addition, the time-domain characteristics of the wavelet transform are also detected. The comparison results show that the wavelet transform method is better in detecting brain diseases. |
doi_str_mv | 10.1023/a:1015075101937 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71696300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>57551411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-d025501b6640581adefd6cbe785a64922d978d79c3dd396997f728c3e5dad0483</originalsourceid><addsrcrecordid>eNqFkE1Lw0AURQdRbK2u3cngwl30vUzmy52UtApFNxXchWlmYlOSTM0kSv-9KdaNG1cHLuc-eJeQS4RbhJjdmXsE5CD5AM3kERkjlywSSr8dkzFgoiLOtRqRsxA2AKCFkKdkhDGgEghj8jz19da0ZfAN9QX9Mp-uch3tWtOEwrc1NY2ls9mS1q5bexto2dBu7YbYVLtQhn0pTec0lO9DEs7JSTHAXRw4Ia-zdDl9jBYv86fpwyLKGVNdZCHmHHAlRAJcobGusCJfOam4EYmOY6ulslLnzFqmhdaykLHKmePWWEgUm5Cbn7vb1n_0LnRZXYbcVZVpnO9DJlFowQD-FbnkHBPEQbz-I2583-5_yiSXw9axTgbp6iD1q9rZbNuWtWl32e-e7BveeXUv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757023294</pqid></control><display><type>article</type><title>Comparison of wavelet transform and FFT methods in the analysis of EEG signals</title><source>Library & Information Science Abstracts (LISA)</source><source>Springer Nature</source><creator>Akin, M</creator><creatorcontrib>Akin, M</creatorcontrib><description>In this study, whether the wavelet transform method is better for spectral analysis of the brain signals is investigated. For this purpose, as a spectral analysis tool, wavelet transform is compared with fast Fourier transform (FFT) applied to the electroencephalograms (EEG), which have been used in the previous studies. In addition, the time-domain characteristics of the wavelet transform are also detected. The comparison results show that the wavelet transform method is better in detecting brain diseases.</description><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1023/a:1015075101937</identifier><identifier>PMID: 12018610</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Brain diseases ; Brain Diseases - diagnosis ; Brain Diseases - physiopathology ; Data Interpretation, Statistical ; Diagnosis ; Diagnosis, Computer-Assisted ; Electroencephalograms ; Electroencephalography - statistics & numerical data ; Fourier Analysis ; Fourier transforms ; Humans ; Medical informatics ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; Spectral analysis ; Wavelet transform ; Wavelet transforms</subject><ispartof>Journal of medical systems, 2002-06, Vol.26 (3), p.241-247</ispartof><rights>Plenum Publishing Corporation 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-d025501b6640581adefd6cbe785a64922d978d79c3dd396997f728c3e5dad0483</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34136</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12018610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akin, M</creatorcontrib><title>Comparison of wavelet transform and FFT methods in the analysis of EEG signals</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><description>In this study, whether the wavelet transform method is better for spectral analysis of the brain signals is investigated. For this purpose, as a spectral analysis tool, wavelet transform is compared with fast Fourier transform (FFT) applied to the electroencephalograms (EEG), which have been used in the previous studies. In addition, the time-domain characteristics of the wavelet transform are also detected. The comparison results show that the wavelet transform method is better in detecting brain diseases.</description><subject>Brain diseases</subject><subject>Brain Diseases - diagnosis</subject><subject>Brain Diseases - physiopathology</subject><subject>Data Interpretation, Statistical</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Electroencephalograms</subject><subject>Electroencephalography - statistics & numerical data</subject><subject>Fourier Analysis</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Medical informatics</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Spectral analysis</subject><subject>Wavelet transform</subject><subject>Wavelet transforms</subject><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNqFkE1Lw0AURQdRbK2u3cngwl30vUzmy52UtApFNxXchWlmYlOSTM0kSv-9KdaNG1cHLuc-eJeQS4RbhJjdmXsE5CD5AM3kERkjlywSSr8dkzFgoiLOtRqRsxA2AKCFkKdkhDGgEghj8jz19da0ZfAN9QX9Mp-uch3tWtOEwrc1NY2ls9mS1q5bexto2dBu7YbYVLtQhn0pTec0lO9DEs7JSTHAXRw4Ia-zdDl9jBYv86fpwyLKGVNdZCHmHHAlRAJcobGusCJfOam4EYmOY6ulslLnzFqmhdaykLHKmePWWEgUm5Cbn7vb1n_0LnRZXYbcVZVpnO9DJlFowQD-FbnkHBPEQbz-I2583-5_yiSXw9axTgbp6iD1q9rZbNuWtWl32e-e7BveeXUv</recordid><startdate>200206</startdate><enddate>200206</enddate><creator>Akin, M</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>E3H</scope><scope>F2A</scope><scope>7X8</scope></search><sort><creationdate>200206</creationdate><title>Comparison of wavelet transform and FFT methods in the analysis of EEG signals</title><author>Akin, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-d025501b6640581adefd6cbe785a64922d978d79c3dd396997f728c3e5dad0483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Brain diseases</topic><topic>Brain Diseases - diagnosis</topic><topic>Brain Diseases - physiopathology</topic><topic>Data Interpretation, Statistical</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Electroencephalograms</topic><topic>Electroencephalography - statistics & numerical data</topic><topic>Fourier Analysis</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Medical informatics</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Spectral analysis</topic><topic>Wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akin, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Health Management</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akin, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of wavelet transform and FFT methods in the analysis of EEG signals</atitle><jtitle>Journal of medical systems</jtitle><addtitle>J Med Syst</addtitle><date>2002-06</date><risdate>2002</risdate><volume>26</volume><issue>3</issue><spage>241</spage><epage>247</epage><pages>241-247</pages><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>In this study, whether the wavelet transform method is better for spectral analysis of the brain signals is investigated. For this purpose, as a spectral analysis tool, wavelet transform is compared with fast Fourier transform (FFT) applied to the electroencephalograms (EEG), which have been used in the previous studies. In addition, the time-domain characteristics of the wavelet transform are also detected. The comparison results show that the wavelet transform method is better in detecting brain diseases.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>12018610</pmid><doi>10.1023/a:1015075101937</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-5598 |
ispartof | Journal of medical systems, 2002-06, Vol.26 (3), p.241-247 |
issn | 0148-5598 1573-689X |
language | eng |
recordid | cdi_proquest_miscellaneous_71696300 |
source | Library & Information Science Abstracts (LISA); Springer Nature |
subjects | Brain diseases Brain Diseases - diagnosis Brain Diseases - physiopathology Data Interpretation, Statistical Diagnosis Diagnosis, Computer-Assisted Electroencephalograms Electroencephalography - statistics & numerical data Fourier Analysis Fourier transforms Humans Medical informatics Sensitivity and Specificity Signal Processing, Computer-Assisted Spectral analysis Wavelet transform Wavelet transforms |
title | Comparison of wavelet transform and FFT methods in the analysis of EEG signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20wavelet%20transform%20and%20FFT%20methods%20in%20the%20analysis%20of%20EEG%20signals&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Akin,%20M&rft.date=2002-06&rft.volume=26&rft.issue=3&rft.spage=241&rft.epage=247&rft.pages=241-247&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1023/a:1015075101937&rft_dat=%3Cproquest_pubme%3E57551411%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-d025501b6640581adefd6cbe785a64922d978d79c3dd396997f728c3e5dad0483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=757023294&rft_id=info:pmid/12018610&rfr_iscdi=true |