Loading…
Spontaneous formation of periodic nanostructured film by electrodeposition: Experimental observations and modeling
In this paper we report the spontaneous formation of a nanostructured film by electrodeposition from an ultrathin electrolyte layer of CuSO4. The film consists of straight periodic ditches and ridges, which corresponds to the alternating deposition of nanocrystallites of copper and copper plus cupro...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-02, Vol.69 (2 Pt 1), p.021607-021607, Article 021607 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we report the spontaneous formation of a nanostructured film by electrodeposition from an ultrathin electrolyte layer of CuSO4. The film consists of straight periodic ditches and ridges, which corresponds to the alternating deposition of nanocrystallites of copper and copper plus cuprous oxide, respectively. The periodicity on the film may vary from 100 nm to a few hundred nanometers depending on the experimental conditions. In the formation of the periodically nanostructured film, oscillating voltage/current has been observed across the electrodes, and the frequency depends on the pH of the electrolyte and the applied current/voltage. A model based on the coupling of [Cu2+] and [H+] in the electrodeposition is proposed to describe the oscillatory phenomena in our system. The calculated results are in agreement with the experimental observations. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.69.021607 |