Loading…
Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow
The mechanisms regulating the homing/mobilization of hematopoietic stem/progenitor cells (HSPCs) are not fully understood. In our previous studies we showed that the complement C3 activation peptide, C3a, sensitizes responses of HSPCs to stromal-derived factor 1 (SDF-1). In this study, mobilization...
Saved in:
Published in: | Blood 2004-03, Vol.103 (6), p.2071-2078 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanisms regulating the homing/mobilization of hematopoietic stem/progenitor cells (HSPCs) are not fully understood. In our previous studies we showed that the complement C3 activation peptide, C3a, sensitizes responses of HSPCs to stromal-derived factor 1 (SDF-1). In this study, mobilization was induced with granulocyte colony-stimulating factor (G-CSF) in both C3-deficient (C3–/–) and C3a receptor–deficient (C3aR–/–) mice as well as in wild-type (wt) mice in the presence or absence of a C3aR antagonist, SB 290157. The data indicated (1) significantly increased G-CSF–induced mobilization in C3–/– and C3aR–/– mice compared with wt mice, (2) significantly accelerated and enhanced G-CSF–induced mobilization in wt, but not in C3–/– or C3aR–/–, mice treated with SB 290157, and (3) deposition of C3b/iC3b fragments onto the viable bone marrow (BM) cells of G-CSF–treated animals. Furthermore, mobilization studies performed in chimeric mice revealed that wt mice reconstituted with C3aR–/– BM cells, but not C3aR–/– mice reconstituted with wt BM cells, are more sensitive to G-CSF–induced mobilization, suggesting that C3aR deficiency on graft-derived cells is responsible for this increased mobilization. Hence we suggest that C3 is activated in mobilized BM into C3a and C3b, and that the C3a-C3aR axis plays an important and novel role in retention of HSPCs (by counteracting mobilization) by increasing their responsiveness to SDF-1, the concentration of which is reduced in BM during mobilization. The C3a-C3aR axis may prevent an uncontrolled release of HSPCs into peripheral blood. These data further suggest that the C3aR antagonist SB 290157 could be developed as a drug to mobilize HSPCs for transplantation. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2003-06-2099 |