Loading…
A Limiting Speed for Protein Folding at Low Solvent Viscosity
Because protein folding dynamics are heavily overdamped, Kramers theory predicts the rate of folding to scale inversely with the reaction friction, which is usually interpreted to mean the solvent viscosity. This does not mean, however, that the speed of folding can increase without limit as solvent...
Saved in:
Published in: | Journal of the American Chemical Society 2004-03, Vol.126 (11), p.3398-3399 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Because protein folding dynamics are heavily overdamped, Kramers theory predicts the rate of folding to scale inversely with the reaction friction, which is usually interpreted to mean the solvent viscosity. This does not mean, however, that the speed of folding can increase without limit as solvent viscosity decreases. We show that, in a sufficiently fast-folding protein, the folding speed approaches a finite limit at low solvent viscosity, indicating a reaction controlled by internal friction. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja049966r |