Loading…

Trigemino-autonomic connections in the muskrat: the neural substrate for the diving response

Stimulation of the anterior ethmoidal nerve of the muskrat produces a cardiorespiratory depression similar to the diving response. This includes an apnea, a parasympathetic bradycardia, and a selective increase in sympathetic vascular tone. However, the brainstem circuitry that links the afferent st...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 2000-08, Vol.874 (1), p.48-65
Main Authors: Panneton, W.Michael, McCulloch, Paul F, Sun, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stimulation of the anterior ethmoidal nerve of the muskrat produces a cardiorespiratory depression similar to the diving response. This includes an apnea, a parasympathetic bradycardia, and a selective increase in sympathetic vascular tone. However, the brainstem circuitry that links the afferent stimulus to the efferent autonomic responses is unknown. We used the anterograde transneuronal transport of the herpes simplex virus (HSV-1), strain 129, after its injection into the anterior ethmoidal nerve to determine the primary, secondary, and tertiary brainstem relays responsible for this cardiorespiratory response. In an effort to check the validity of this relatively untested tracer, we also injected the medullary dorsal horn with biotinylated dextran amine to determine the secondary trigemino-autonomic projections. Approximately 1 μl (6×10 6 PFU) of the HSV-1 virus was injected directly into the anterior ethmoidal nerve of muskrats. After 2–6 days, their trigeminal ganglions, spinal cords and brainstems were cut and immunohistologically processed for HSV-1. Initially (2 days), HSV-1 was observed only in the trigeminal ganglion. After approximately 3 days, HSV-1 was observed first in many brainstem areas optimally labeled between 4 and 4.5 days. In these cases, the ventrolateral superficial medullary dorsal horn, the ventral paratrigeminal nucleus and the interface between the interpolar and caudal subnuclei were labeled ipsilaterally. The nucleus tractus solitarius (NTS), especially its ventrolateral, dorsolateral, and commissural subnuclei were labeled as well as the caudal, intermediate and rostral ventrolateral medulla. Within the pons, the superior salivatory nucleus, the A5 area, the ventrolateral part of the parabrachial nucleus and the Kölliker–Fuse nucleus were labeled. Only after a survival of 4 days or more, the locus coeruleus, the nucleus raphe magnus, the nucleus paragigantocellularis, pars alpha, and the pontine raphe nucleus were labeled. Injections of biotinylated dextran amine were made into the medullary dorsal horn (MDH) in a location similar to that labeled after the viral injections. Fine fibers and terminals were labeled in the same brainstem areas labeled after injections of HSV-1 into the anterior ethmoidal nerve. This study outlines the potential brainstem circuit for the diving response, the most powerful autonomic reflex known. It also confirms the efficacy for using HSV-1, strain 129, as an anterograde transneuronal transport m
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(00)02549-X