Loading…

Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF

Over 30 mutations of the B-RAF gene associated with human cancers have been identified, the majority of which are located within the kinase domain. Here we show that of 22 B-RAF mutants analyzed, 18 have elevated kinase activity and signal to ERK in vivo. Surprisingly, three mutants have reduced kin...

Full description

Saved in:
Bibliographic Details
Published in:Cell 2004-03, Vol.116 (6), p.855-867
Main Authors: Wan, Paul T.C, Garnett, Mathew J, Roe, S.Mark, Lee, Sharlene, Niculescu-Duvaz, Dan, Good, Valerie M, Project, Cancer Genome, Jones, C.Michael, Marshall, Christopher J, Springer, Caroline J, Barford, David, Marais, Richard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c559t-ec8bcf22c393113637f2a225957fa55c6831a2bf56b35340415cfae81a0b847b3
cites cdi_FETCH-LOGICAL-c559t-ec8bcf22c393113637f2a225957fa55c6831a2bf56b35340415cfae81a0b847b3
container_end_page 867
container_issue 6
container_start_page 855
container_title Cell
container_volume 116
creator Wan, Paul T.C
Garnett, Mathew J
Roe, S.Mark
Lee, Sharlene
Niculescu-Duvaz, Dan
Good, Valerie M
Project, Cancer Genome
Jones, C.Michael
Marshall, Christopher J
Springer, Caroline J
Barford, David
Marais, Richard
description Over 30 mutations of the B-RAF gene associated with human cancers have been identified, the majority of which are located within the kinase domain. Here we show that of 22 B-RAF mutants analyzed, 18 have elevated kinase activity and signal to ERK in vivo. Surprisingly, three mutants have reduced kinase activity towards MEK in vitro but, by activating C-RAF in vivo, signal to ERK in cells. The structures of wild type and oncogenic V599EB-RAF kinase domains in complex with the RAF inhibitor BAY43-9006 show that the activation segment is held in an inactive conformation by association with the P loop. The clustering of most mutations to these two regions suggests that disruption of this interaction converts B-RAF into its active conformation. The high activity mutants signal to ERK by directly phosphorylating MEK, whereas the impaired activity mutants stimulate MEK by activating endogenous C-RAF, possibly via an allosteric or transphosphorylation mechanism.
doi_str_mv 10.1016/S0092-8674(04)00215-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71743142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867404002156</els_id><sourcerecordid>17916067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-ec8bcf22c393113637f2a225957fa55c6831a2bf56b35340415cfae81a0b847b3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUQIMoOqc_QemT6EP13qRJ2ieZsqm4ofgBvoU0S7dI12rTTvbvbd3QR-FCuHBOLhxCjhDOEVBcPAMkNIyFjE4hOgOgyEOxRXoIiQwjlHSb9H6RPbLv_TsAxJzzXbKHHBhPYtkjbxNr5rpwfhGUWTAwtVvq2pVFt9VzGzwNRuHw6T54drNC566YBY-6nn_pVZCugofClDNbOBNMmvpH8513FbbWAdnJdO7t4ebtk9fR8OX6Nhw_3NxdD8ah4TypQ2vi1GSUGpYwRCaYzKimlCdcZppzI2KGmqYZFynjLIIIucm0jVFDGkcyZX1ysv73oyo_G-trtXDe2DzXhS0bryTKiGFE_wVRJihAyBbka9BUpfeVzdRH5Ra6WikE1bVXP-1VF1ZBO117JVrveHOgSRd2-mdtYrfA5RqwbY-ls5XyxtnC2KmrrKnVtHT_nPgGPqiRHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17916067</pqid></control><display><type>article</type><title>Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF</title><source>ScienceDirect Journals</source><creator>Wan, Paul T.C ; Garnett, Mathew J ; Roe, S.Mark ; Lee, Sharlene ; Niculescu-Duvaz, Dan ; Good, Valerie M ; Project, Cancer Genome ; Jones, C.Michael ; Marshall, Christopher J ; Springer, Caroline J ; Barford, David ; Marais, Richard</creator><creatorcontrib>Wan, Paul T.C ; Garnett, Mathew J ; Roe, S.Mark ; Lee, Sharlene ; Niculescu-Duvaz, Dan ; Good, Valerie M ; Project, Cancer Genome ; Jones, C.Michael ; Marshall, Christopher J ; Springer, Caroline J ; Barford, David ; Marais, Richard ; Cancer Genome Project</creatorcontrib><description>Over 30 mutations of the B-RAF gene associated with human cancers have been identified, the majority of which are located within the kinase domain. Here we show that of 22 B-RAF mutants analyzed, 18 have elevated kinase activity and signal to ERK in vivo. Surprisingly, three mutants have reduced kinase activity towards MEK in vitro but, by activating C-RAF in vivo, signal to ERK in cells. The structures of wild type and oncogenic V599EB-RAF kinase domains in complex with the RAF inhibitor BAY43-9006 show that the activation segment is held in an inactive conformation by association with the P loop. The clustering of most mutations to these two regions suggests that disruption of this interaction converts B-RAF into its active conformation. The high activity mutants signal to ERK by directly phosphorylating MEK, whereas the impaired activity mutants stimulate MEK by activating endogenous C-RAF, possibly via an allosteric or transphosphorylation mechanism.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/S0092-8674(04)00215-6</identifier><identifier>PMID: 15035987</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allosteric Regulation - genetics ; Animals ; Catalytic Domain - genetics ; Cell Transformation, Neoplastic - genetics ; Enzyme Inhibitors - pharmacology ; Gene Expression Regulation, Enzymologic - genetics ; MAP Kinase Kinase 1 ; MAP Kinase Signaling System - genetics ; Mice ; Mitogen-Activated Protein Kinase Kinases - genetics ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Mitogen-Activated Protein Kinases - genetics ; Models, Molecular ; Molecular Conformation ; Mutation - genetics ; Neoplasms - enzymology ; Neoplasms - genetics ; NIH 3T3 Cells ; Oncogenes - genetics ; Oocytes ; Phosphorylation ; Phosphotransferases - genetics ; Phosphotransferases - metabolism ; Proto-Oncogene Proteins B-raf ; Proto-Oncogene Proteins c-raf - antagonists &amp; inhibitors ; Proto-Oncogene Proteins c-raf - genetics ; Proto-Oncogene Proteins c-raf - metabolism ; Up-Regulation - genetics ; Xenopus</subject><ispartof>Cell, 2004-03, Vol.116 (6), p.855-867</ispartof><rights>2004 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-ec8bcf22c393113637f2a225957fa55c6831a2bf56b35340415cfae81a0b847b3</citedby><cites>FETCH-LOGICAL-c559t-ec8bcf22c393113637f2a225957fa55c6831a2bf56b35340415cfae81a0b847b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867404002156$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15035987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Paul T.C</creatorcontrib><creatorcontrib>Garnett, Mathew J</creatorcontrib><creatorcontrib>Roe, S.Mark</creatorcontrib><creatorcontrib>Lee, Sharlene</creatorcontrib><creatorcontrib>Niculescu-Duvaz, Dan</creatorcontrib><creatorcontrib>Good, Valerie M</creatorcontrib><creatorcontrib>Project, Cancer Genome</creatorcontrib><creatorcontrib>Jones, C.Michael</creatorcontrib><creatorcontrib>Marshall, Christopher J</creatorcontrib><creatorcontrib>Springer, Caroline J</creatorcontrib><creatorcontrib>Barford, David</creatorcontrib><creatorcontrib>Marais, Richard</creatorcontrib><creatorcontrib>Cancer Genome Project</creatorcontrib><title>Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF</title><title>Cell</title><addtitle>Cell</addtitle><description>Over 30 mutations of the B-RAF gene associated with human cancers have been identified, the majority of which are located within the kinase domain. Here we show that of 22 B-RAF mutants analyzed, 18 have elevated kinase activity and signal to ERK in vivo. Surprisingly, three mutants have reduced kinase activity towards MEK in vitro but, by activating C-RAF in vivo, signal to ERK in cells. The structures of wild type and oncogenic V599EB-RAF kinase domains in complex with the RAF inhibitor BAY43-9006 show that the activation segment is held in an inactive conformation by association with the P loop. The clustering of most mutations to these two regions suggests that disruption of this interaction converts B-RAF into its active conformation. The high activity mutants signal to ERK by directly phosphorylating MEK, whereas the impaired activity mutants stimulate MEK by activating endogenous C-RAF, possibly via an allosteric or transphosphorylation mechanism.</description><subject>Allosteric Regulation - genetics</subject><subject>Animals</subject><subject>Catalytic Domain - genetics</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Gene Expression Regulation, Enzymologic - genetics</subject><subject>MAP Kinase Kinase 1</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinase Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Mutation - genetics</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - genetics</subject><subject>NIH 3T3 Cells</subject><subject>Oncogenes - genetics</subject><subject>Oocytes</subject><subject>Phosphorylation</subject><subject>Phosphotransferases - genetics</subject><subject>Phosphotransferases - metabolism</subject><subject>Proto-Oncogene Proteins B-raf</subject><subject>Proto-Oncogene Proteins c-raf - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-raf - genetics</subject><subject>Proto-Oncogene Proteins c-raf - metabolism</subject><subject>Up-Regulation - genetics</subject><subject>Xenopus</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUQIMoOqc_QemT6EP13qRJ2ieZsqm4ofgBvoU0S7dI12rTTvbvbd3QR-FCuHBOLhxCjhDOEVBcPAMkNIyFjE4hOgOgyEOxRXoIiQwjlHSb9H6RPbLv_TsAxJzzXbKHHBhPYtkjbxNr5rpwfhGUWTAwtVvq2pVFt9VzGzwNRuHw6T54drNC566YBY-6nn_pVZCugofClDNbOBNMmvpH8513FbbWAdnJdO7t4ebtk9fR8OX6Nhw_3NxdD8ah4TypQ2vi1GSUGpYwRCaYzKimlCdcZppzI2KGmqYZFynjLIIIucm0jVFDGkcyZX1ysv73oyo_G-trtXDe2DzXhS0bryTKiGFE_wVRJihAyBbka9BUpfeVzdRH5Ra6WikE1bVXP-1VF1ZBO117JVrveHOgSRd2-mdtYrfA5RqwbY-ls5XyxtnC2KmrrKnVtHT_nPgGPqiRHQ</recordid><startdate>20040319</startdate><enddate>20040319</enddate><creator>Wan, Paul T.C</creator><creator>Garnett, Mathew J</creator><creator>Roe, S.Mark</creator><creator>Lee, Sharlene</creator><creator>Niculescu-Duvaz, Dan</creator><creator>Good, Valerie M</creator><creator>Project, Cancer Genome</creator><creator>Jones, C.Michael</creator><creator>Marshall, Christopher J</creator><creator>Springer, Caroline J</creator><creator>Barford, David</creator><creator>Marais, Richard</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040319</creationdate><title>Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF</title><author>Wan, Paul T.C ; Garnett, Mathew J ; Roe, S.Mark ; Lee, Sharlene ; Niculescu-Duvaz, Dan ; Good, Valerie M ; Project, Cancer Genome ; Jones, C.Michael ; Marshall, Christopher J ; Springer, Caroline J ; Barford, David ; Marais, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-ec8bcf22c393113637f2a225957fa55c6831a2bf56b35340415cfae81a0b847b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Allosteric Regulation - genetics</topic><topic>Animals</topic><topic>Catalytic Domain - genetics</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Gene Expression Regulation, Enzymologic - genetics</topic><topic>MAP Kinase Kinase 1</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinase Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Mutation - genetics</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - genetics</topic><topic>NIH 3T3 Cells</topic><topic>Oncogenes - genetics</topic><topic>Oocytes</topic><topic>Phosphorylation</topic><topic>Phosphotransferases - genetics</topic><topic>Phosphotransferases - metabolism</topic><topic>Proto-Oncogene Proteins B-raf</topic><topic>Proto-Oncogene Proteins c-raf - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-raf - genetics</topic><topic>Proto-Oncogene Proteins c-raf - metabolism</topic><topic>Up-Regulation - genetics</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Paul T.C</creatorcontrib><creatorcontrib>Garnett, Mathew J</creatorcontrib><creatorcontrib>Roe, S.Mark</creatorcontrib><creatorcontrib>Lee, Sharlene</creatorcontrib><creatorcontrib>Niculescu-Duvaz, Dan</creatorcontrib><creatorcontrib>Good, Valerie M</creatorcontrib><creatorcontrib>Project, Cancer Genome</creatorcontrib><creatorcontrib>Jones, C.Michael</creatorcontrib><creatorcontrib>Marshall, Christopher J</creatorcontrib><creatorcontrib>Springer, Caroline J</creatorcontrib><creatorcontrib>Barford, David</creatorcontrib><creatorcontrib>Marais, Richard</creatorcontrib><creatorcontrib>Cancer Genome Project</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Paul T.C</au><au>Garnett, Mathew J</au><au>Roe, S.Mark</au><au>Lee, Sharlene</au><au>Niculescu-Duvaz, Dan</au><au>Good, Valerie M</au><au>Project, Cancer Genome</au><au>Jones, C.Michael</au><au>Marshall, Christopher J</au><au>Springer, Caroline J</au><au>Barford, David</au><au>Marais, Richard</au><aucorp>Cancer Genome Project</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2004-03-19</date><risdate>2004</risdate><volume>116</volume><issue>6</issue><spage>855</spage><epage>867</epage><pages>855-867</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Over 30 mutations of the B-RAF gene associated with human cancers have been identified, the majority of which are located within the kinase domain. Here we show that of 22 B-RAF mutants analyzed, 18 have elevated kinase activity and signal to ERK in vivo. Surprisingly, three mutants have reduced kinase activity towards MEK in vitro but, by activating C-RAF in vivo, signal to ERK in cells. The structures of wild type and oncogenic V599EB-RAF kinase domains in complex with the RAF inhibitor BAY43-9006 show that the activation segment is held in an inactive conformation by association with the P loop. The clustering of most mutations to these two regions suggests that disruption of this interaction converts B-RAF into its active conformation. The high activity mutants signal to ERK by directly phosphorylating MEK, whereas the impaired activity mutants stimulate MEK by activating endogenous C-RAF, possibly via an allosteric or transphosphorylation mechanism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15035987</pmid><doi>10.1016/S0092-8674(04)00215-6</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2004-03, Vol.116 (6), p.855-867
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_71743142
source ScienceDirect Journals
subjects Allosteric Regulation - genetics
Animals
Catalytic Domain - genetics
Cell Transformation, Neoplastic - genetics
Enzyme Inhibitors - pharmacology
Gene Expression Regulation, Enzymologic - genetics
MAP Kinase Kinase 1
MAP Kinase Signaling System - genetics
Mice
Mitogen-Activated Protein Kinase Kinases - genetics
Mitogen-Activated Protein Kinase Kinases - metabolism
Mitogen-Activated Protein Kinases - genetics
Models, Molecular
Molecular Conformation
Mutation - genetics
Neoplasms - enzymology
Neoplasms - genetics
NIH 3T3 Cells
Oncogenes - genetics
Oocytes
Phosphorylation
Phosphotransferases - genetics
Phosphotransferases - metabolism
Proto-Oncogene Proteins B-raf
Proto-Oncogene Proteins c-raf - antagonists & inhibitors
Proto-Oncogene Proteins c-raf - genetics
Proto-Oncogene Proteins c-raf - metabolism
Up-Regulation - genetics
Xenopus
title Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Activation%20of%20the%20RAF-ERK%20Signaling%20Pathway%20by%20Oncogenic%20Mutations%20of%20B-RAF&rft.jtitle=Cell&rft.au=Wan,%20Paul%20T.C&rft.aucorp=Cancer%20Genome%20Project&rft.date=2004-03-19&rft.volume=116&rft.issue=6&rft.spage=855&rft.epage=867&rft.pages=855-867&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/S0092-8674(04)00215-6&rft_dat=%3Cproquest_cross%3E17916067%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-ec8bcf22c393113637f2a225957fa55c6831a2bf56b35340415cfae81a0b847b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17916067&rft_id=info:pmid/15035987&rfr_iscdi=true