Loading…
Designing Antibacterial Compounds through a Topological Substructural Approach
A novel application of TOPological Substructural MOlecular DEsign (TOPS-MODE) was carried out in antibacterial drugs using computer-aided molecular design. Two series of compounds, one containing antibacterial and the other containing non-antibacterial compounds, were processed by a k-means cluster...
Saved in:
Published in: | Journal of Chemical Information and Computer Sciences 2004-03, Vol.44 (2), p.515-521 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel application of TOPological Substructural MOlecular DEsign (TOPS-MODE) was carried out in antibacterial drugs using computer-aided molecular design. Two series of compounds, one containing antibacterial and the other containing non-antibacterial compounds, were processed by a k-means cluster analysis in order to design training and predicting series. All clusters had a p-level < 0.005. Afterward, a linear classification function has been derived toward discrimination between antibacterial and non-antibacterial compounds. The model correctly classifies 94% of active and 86% of inactive compounds in the training series. More specifically, the model showed a global good classification of 91%, i.e., 263 cases out of 289. In predicting series, the model has shown overall predictabilities of 91 and 83% for active and inactive compounds, respectively. Thereby, the model has a global percentage of good classification of 89%. The TOPS-MODE approach, also, similarly compares with respect to one of the most useful models for antimicrobials selection reported to date. |
---|---|
ISSN: | 0095-2338 1549-9596 1549-960X |
DOI: | 10.1021/ci0342019 |