Loading…
Differences in regulation of pH(i) in large (>/=10 nuclei) and small (</=5 nuclei) osteoclasts
Osteoclasts are multinucleated cells that resorb bone by extrusion of protons and proteolytic enzymes. They display marked heterogeneity in cell size, shape, and resorptive activity. Because high resorptive activity in vivo is associated with an increase in the average size of osteoclasts in areas o...
Saved in:
Published in: | American Journal of Physiology: Cell Physiology 2000-09, Vol.279 (3), p.C751-C761 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Osteoclasts are multinucleated cells that resorb bone by extrusion of protons and proteolytic enzymes. They display marked heterogeneity in cell size, shape, and resorptive activity. Because high resorptive activity in vivo is associated with an increase in the average size of osteoclasts in areas of greater resorption and because of the importance of proton extrusion in resorption, we investigated whether the activity of the bafilomycin A(1)-sensitive vacuolar-type H(+)-ATPase (V-ATPase) and amiloride-sensitive Na(+)/H(+) exchanger differed between large and small osteoclasts. Osteoclasts were obtained from newborn rabbit bones, cultured on glass coverslips, and loaded with the pH-sensitive indicator 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Intracellular pH (pH(i)) was recorded in single osteoclasts by monitoring fluorescence. Large (>/=10 nuclei) and small ( |
---|---|
ISSN: | 0363-6143 |
DOI: | 10.1152/ajpcell.2000.279.3.c751 |