Loading…
The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water-deficit stress
Water deficit has a significant impact on patterns of gene expression. Based on the deduced amino acid sequence, it has been proposed that the drought and abscisic acid-induced gene (his1-s) of tomato (Lycopersicon esculentum Mill.) encodes an H1 histone variant. To study the role of H1-S it is impo...
Saved in:
Published in: | Planta 2000-07, Vol.211 (2), p.173-181 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water deficit has a significant impact on patterns of gene expression. Based on the deduced amino acid sequence, it has been proposed that the drought and abscisic acid-induced gene (his1-s) of tomato (Lycopersicon esculentum Mill.) encodes an H1 histone variant. To study the role of H1-S it is important to understand the expression characteristics of the protein. To identify the his1-s product in vivo the his1-s cDNA was fused to a (His)6 tag and overexpressed in Escherichia coli. The H1-S fusion protein was used to generate an antibody that recognized a protein with an apparent molecular weight of 31 kDa that accumulates in response to water deficit in the whole plant and detached leaves. A time course of his1-s expression showed that protein accumulation is delayed compared to the mRNA accumulation in both the whole plant and detached leaves. Cellular fractionation, immunofluorescence and H1-S::β-glucuronidase fusion analyses in transgenic tissues were used to determine the cellular localization of H1-S. The results showed that H1-S accumulates in nuclei and is associated with chromatin of wilted tomato leaves. The drought- and abscisic acid-induced gene his1-s encodes a linker-histone subtype specifically accumulated in the nuclei and chromatin of tomato leaves subjected to water-deficit conditions. Although the molecular mechanism of H1-S function is still unclear, the expression characteristics of H1-S are consistent with a potential role of this protein in the regulation of gene expression in response to water deficit. |
---|---|
ISSN: | 0032-0935 1432-2048 |
DOI: | 10.1007/s004250000278 |