Loading…

Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy

Reactive gliosis is a prominent morphological feature of mesial temporal lobe epilepsy. Because astrocytes express glutamate receptors, we examined changes in metabotropic glutamate receptor (mGluR) 2/3, mGluR5 and transforming growth factor (TGF)‐β in glial cells of the hippocampal regions in an ex...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience 2000-07, Vol.12 (7), p.2333-2344
Main Authors: Aronica, Eleonora, Van Vliet, Erwin A., Mayboroda, Oleg A., Troost, Dirk, Da Silva, Fernando H. Lopes, Gorter, Jan A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reactive gliosis is a prominent morphological feature of mesial temporal lobe epilepsy. Because astrocytes express glutamate receptors, we examined changes in metabotropic glutamate receptor (mGluR) 2/3, mGluR5 and transforming growth factor (TGF)‐β in glial cells of the hippocampal regions in an experimental rat model of spontaneous seizures. Rats that exhibited behavioural status epilepticus (SE) directly after 1 h of electrical angular bundle stimulation, displayed chronic spontaneous seizures after a latent period of 1–2 weeks as observed using continuous electrographic monitoring. SE resulted in hypertrophy of astrocytes and microglia activation throughout the hippocampus as revealed by immunolabelling studies. A dramatic, seizure intensity‐dependent increase in vimentin immunoreactivity (a marker for reactive astrocytes) was revealed in CA3 and hilar regions where prominent neuronal loss occurs. Increased vimentin labelling was first apparent 24 h after onset of SE and persisted up to 3 months. mGluR2/3 and mGluR5 protein expression increased markedly in glial cells of CA3 and hilus by 1 week after SE, and persisted up to 3 months after SE. Double immunolabelling of brain sections with vimentin confirmed co‐localization with glial fibrillary acidic protein (GFAP), mGluR2/3 and mGluR5 in reactive astrocytes. TGF‐β, a cytokine implicated in mGluR3‐mediated neuroprotection, was also upregulated during the first 3 weeks after SE throughout the hippocampus. This study demonstrates seizure‐induced upregulation of two mGluR subtypes in reactive astrocytes, which − together with the increased production of TGF‐β − may represent a novel mechanism for modulation of glial function and for changes in glial‐neuronal communication in the course of epileptogenesis.
ISSN:0953-816X
1460-9568
DOI:10.1046/j.1460-9568.2000.00131.x