Loading…

Circulating neurotransmitters during the different wake-sleep stages in normal subjects

We investigated the changes of circulating neurotransmitters during the wake-sleep cycle in order to find possible correlations with the activity of central neurocircuitry functioning. Noradrenaline (NA), adrenaline (Ad), dopamine (DA), platelet serotonin (p-5HT), plasma serotonin (f-5HT) and plasma...

Full description

Saved in:
Bibliographic Details
Published in:Psychoneuroendocrinology 2004-06, Vol.29 (5), p.669-685
Main Authors: LECHIN, Fuad, PARDEY-MALDONADO, Betty, VAN DER DIJS, Bertha, BENAIM, Mireya, BAEZ, Scarlet, OROZCO, Beatriz, LECHIN, Alex E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the changes of circulating neurotransmitters during the wake-sleep cycle in order to find possible correlations with the activity of central neurocircuitry functioning. Noradrenaline (NA), adrenaline (Ad), dopamine (DA), platelet serotonin (p-5HT), plasma serotonin (f-5HT) and plasma tryptophan (TRP) were assessed during the morning (supine resting + 1-min orthostasis + 5-min exercise) and at night (supine resting + slow wave sleep (SWS) + REM sleep). Only NA increased in the plasma during short-lasting (1-min) orthostasis morning waking period. Both NA and Ad rose during moderate exercise. The nocturnal results demonstrated that whereas Ad dropped during the supine resting, NA did not fall until SWS period. Although DA did not show significant changes during the nocturnal test, the NA/DA ratio showed significant reduction. The analysis of correlations supports the postulation that this finding reflects the DA modulatory role on neural sympathetic activity. Both f-5HT and p-5HT values were lower during sleep cycle than wake periods. However, they showed progressive rises during sleep stages. Conversely, the f-5HT/p-5HT ratio showed significantly greater values during the SWS period than during supine resting and REM periods. These findings are consistent with the postulation that f-5HT/p-5HT ratio is positively associated with parasympathetic activity during the sleep-cycle. We concluded that the profile of sleep-cycle circulating neurotransmitters differs from that obtained during waking periods. According to the above, we attempted to correlate the profile of circulating neurotransmitters with the very well-known central neurocircuitry functioning during wake-sleep cycle, in experimental mammals.
ISSN:0306-4530
1873-3360
DOI:10.1016/S0306-4530(03)00095-7