Loading…
Pathway length and evolutionary constraint in amino acid biosynthesis
The evolutionary properties of a metabolic network may be determined by the topology of the network. One attribute of pathways that make up the network is the number of enzymatic steps between initial substrates and final products. To determine the effect of pathway length on evolutionary lability o...
Saved in:
Published in: | Journal of molecular evolution 2004-02, Vol.58 (2), p.218-224 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The evolutionary properties of a metabolic network may be determined by the topology of the network. One attribute of pathways that make up the network is the number of enzymatic steps between initial substrates and final products. To determine the effect of pathway length on evolutionary lability of pathway structure, we examined amino acid biosynthetic pathways across 48 sequenced organisms. We demonstrate that longer pathways exhibit lower rates of change in pathway structure than shorter pathways. This finding suggests that increasing complexity may increase constraint on evolutionary change. |
---|---|
ISSN: | 0022-2844 1432-1432 |
DOI: | 10.1007/s00239-003-2546-y |