Loading…

Characterization and Catalytic Property of Surfactant-Laccase Complex in Organic Media

The oxidation of o‐phenylenediamine catalyzed in anhydrous organic solvents by surfactant‐laccase complex was investigated. The complex was prepared by utilizing a novel preparation technique in water‐in‐oil (W/O) emulsions. The surfactant‐laccase complex effectively catalyzed the oxidation reaction...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology progress 2000-07, Vol.16 (4), p.583-588
Main Authors: Okazaki, Shin-ya, Goto, Masahiro, Wariishi, Hiroyuki, Tanaka, Hiroo, Furusaki, Shintaro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The oxidation of o‐phenylenediamine catalyzed in anhydrous organic solvents by surfactant‐laccase complex was investigated. The complex was prepared by utilizing a novel preparation technique in water‐in‐oil (W/O) emulsions. The surfactant‐laccase complex effectively catalyzed the oxidation reaction in various dry organic solvents, while laccase, lyophilized from an aqueous buffer solution in which its activity was optimized, exhibited no catalytic activity in nonaqueous media. To optimize the preparation and reaction conditions for the surfactant‐enzyme complexes, we examined the effects of pH in the water pool of W/O emulsions, the concentration of enzyme and surfactant at the preparation stage, and the nature of organic solvents at the reaction stage on the laccase activity in organic media. Surfactant‐laccase complex showed a strong pH‐dependent catalytic activity in organic media. Its optimum activity was obtained when the complex was prepared at a pH of about 3. Interestingly, native laccase in an aqueous buffer solution exhibited an optimum activity at the same pH of 3. The optimum preparation conditions of surfactant‐laccase complex were [laccase] = 0.8 mg/mL and [surfactant] = 10 mM, and the complex showed the highest catalytic activity in toluene among nine anhydrous organic solvents. The effect of a cosolubilized mediator (1‐hydroxybenzotriazole (HBT)) on the reaction was also investigated. The addition of HBT at the preparation stage of the enzyme complex did not accelerate the catalytic reaction because HBT was converted to an inactive benzotriazole (BT) by laccase. However, the addition of HBT at the reaction stage enhanced the catalytic performance by a factor of five compared to that without HBT.
ISSN:8756-7938
1520-6033
DOI:10.1021/bp000042r