Loading…
2-Piperidino-1,1,2-triphenylethanol: A Highly Effective Catalyst for the Enantioselective Arylation of Aldehydes
Here we report the use of 2-piperidino-1,2,2-triphenylethanol (5) as an outstanding catalyst for the ligand-catalyzed arylation of aldehydes. The use of 5 and a 2/1 mixture of Et2Zn/Ph2Zn provided the corresponding chiral diarylcarbinols with enantiomeric excess of up to 99% ee. The effect of temper...
Saved in:
Published in: | Journal of organic chemistry 2004-04, Vol.69 (7), p.2532-2543 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here we report the use of 2-piperidino-1,2,2-triphenylethanol (5) as an outstanding catalyst for the ligand-catalyzed arylation of aldehydes. The use of 5 and a 2/1 mixture of Et2Zn/Ph2Zn provided the corresponding chiral diarylcarbinols with enantiomeric excess of up to 99% ee. The effect of temperature on the reaction enantioselectivity was studied and the inversion temperature (T inv) was determined to be 10 °C for reaction with p-tolylaldehyde. Most remarkably, lowering the amount of catalyst (5) to 0.5 mol % still afforded excellent levels of enantiocontrol (93.7% ee). Kinetics of the catalyzed and uncatalyzed arylation of aldehydes was studied by means of in situ FT-IR. The background uncatalyzed addition rates to p-tolylaldehyde when using pure Ph2Zn and Et2Zn/Ph2Zn (2/1) suggest that in the latter case a mixed zinc species forms (EtPhZn) minimizing the undesired nonselective addition. Formation of EtPhZn was modeled at the DFT calculation level. A four-center TS (TS - V) corresponding to the Et/Ph scrambling was localized along with two dimers (D-IV and D-VI). The model supports the hypothesis that Et/Ph exchange is a kinetically facile process. Gas evolution experiments during the formation of the active catalyst showed that the formation of an active site with a ONZn-Et (10) moiety is kinetically favored over ONZn-Ph (11). Finally, the phenyl transfer to benzaldehyde was modeled at the PM3(tm) level through anti and syn 5/4/4 tricyclic TS structures for both 10 and 11. The model could correctly predict the sense and selectivity of the overall process and predicted that 11 should be more selective than 10. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/jo035824o |