Loading…

Real-time cardiac MRI at 3 tesla

Real‐time cardiac and coronary MRI at 1.5T is relatively “signal starved” and the 3T platform is attractive for its immediate factor of two increase in magnetization. Cardiac imaging at 3T, however, is both subtly and significantly different from imaging at 1.5T because of increased susceptibility a...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2004-04, Vol.51 (4), p.655-660
Main Authors: Nayak, Krishna S., Cunningham, Charles H., Santos, Juan M., Pauly, John M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Real‐time cardiac and coronary MRI at 1.5T is relatively “signal starved” and the 3T platform is attractive for its immediate factor of two increase in magnetization. Cardiac imaging at 3T, however, is both subtly and significantly different from imaging at 1.5T because of increased susceptibility artifacts, differences in tissue relaxation, and RF homogeneity issues. New RF excitation and pulse sequence designs are presented which deal with the fat‐suppression requirements and off‐resonance issues at 3T. Real‐time cardiac imaging at 3T is demonstrated with high blood SNR, blood‐myocardium CNR, resolution, and image quality, using new spectral‐spatial RF pulses and fast spiral gradient echo pulse sequences. The proposed sequence achieves 1.5 mm in‐plane resolution over a 20 cm FOV, with a 5.52 mm measured slice thickness and 32 dB of lipid suppression. Complete images are acquired every 120 ms and are reconstructed and displayed at 24 frames/sec using a sliding window. Results from healthy volunteers show improved image quality, a 53% improvement in blood SNR efficiency, and a 232% improvement in blood‐myocardium CNR efficiency compared to 1.5T. Magn Reson Med 51:655–660, 2004. © 2004 Wiley‐Liss, Inc.
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.20053