Loading…
Aging-Induced Phenotypic Changes and Oxidative Stress Impair Coronary Arteriolar Function
We aimed to elucidate the possible role of phenotypic alterations and oxidative stress in age-related endothelial dysfunction of coronary arterioles. Arterioles were isolated from the hearts of young adult (Y, 14 weeks) and aged (A, 80 weeks) male Sprague-Dawley rats. For videomicroscopy, pressure-i...
Saved in:
Published in: | Circulation research 2002-06, Vol.90 (11), p.1159-1166 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We aimed to elucidate the possible role of phenotypic alterations and oxidative stress in age-related endothelial dysfunction of coronary arterioles. Arterioles were isolated from the hearts of young adult (Y, 14 weeks) and aged (A, 80 weeks) male Sprague-Dawley rats. For videomicroscopy, pressure-induced tone of Y and A arterioles and their passive diameter did not differ significantly. In A, arterioles L-NAME (a NO synthase blocker)–sensitive flow-induced dilations were significantly impaired (Y41±8% versus A3±2%), which could be augmented by superoxide dismutase (SOD) or Tiron (but not l-arginine or the TXA2 receptor antagonist SQ29,548). For lucigenin chemiluminescence, O2 generation was significantly greater in A than Y vessels and could be inhibited with SOD and diphenyliodonium. NADH-driven O2 generation was also greater in A vessels. Both endothelial and smooth muscle cells of A vessels produced O2 (shown with ethidium bromide fluorescence). For Western blotting, expression of eNOS and COX-1 was decreased in A compared with Y arterioles, whereas expressions of COX-2, Cu/Zn-SOD, Mn-SOD, xanthine oxidase, and the NAD(P)H oxidase subunits p47, p67, Mox-1, and p22 did not differ. Aged arterioles showed an increased expression of iNOS, confined to the endothelium. Decreased eNOS mRNA and increased iNOS mRNA expression in A vessels was shown by quantitative RT-PCR. In vivo formation of peroxynitrite was evidenced by Western blotting, and immunohistochemistry showing increased 3-nitrotyrosine content in A vessels. Thus, aging induces changes in the phenotype of coronary arterioles that could contribute to the development of oxidative stress, which impairs NO-mediated dilations. |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/01.res.0000020401.61826.ea |