Loading…
Changes of inducible nitric oxide synthase in aortic cells during the development of hypertension: effect of angiotensin II
Nitric oxide (NO) generation by inducible nitric oxide synthase (iNOS) in the vascular smooth muscle cells (VSMC), may play a role in blood vessel tone regulation. Lipopolysaccharide (LPS) induced iNOS activity and subsequent nitrite production by cultured aortic VSMC, from SHR with an established c...
Saved in:
Published in: | Biocell 2002-04, Vol.26 (1), p.61-67 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nitric oxide (NO) generation by inducible nitric oxide synthase (iNOS) in the vascular smooth muscle cells (VSMC), may play a role in blood vessel tone regulation. Lipopolysaccharide (LPS) induced iNOS activity and subsequent nitrite production by cultured aortic VSMC, from SHR with an established chronic blood pressure elevation (adult SHR) or during the period preceding the development of hypertension (young SHR) and from age-matched normotensive Wistar (W) rats were compared. Angiotensin II (Ang II) effect was also evaluated. Both basal LPS-induced iNOS activity and nitrite accumulation were significantly lower in young SHR VSMC compared to young W rat cells. In contrast, adult hypertensive and normotensive rat cells did not differ in NO generation. Besides, young SHR cells exhibited a significant smaller iNOS activity and nitrites than adult SHR cells. After 24 h-incubation with Ang II, both variables were markedly reduced in all groups. The proportional reduction of iNOS activity and nitrites by Ang II was not different between hypertensive and normotensive rat cells, at any age. However, this Ang II inhibitory effect was greater in both adult SHR and W cells than in VSMC from young rats. In conclusion, a reduced LPS-induced iNOS activity and NO generation was observed in VSMC form spontaneously hypertensive rats before the raise of blood pressure, but not in adult hypertensive rat cells. Additionally, an inhibitory effect of angiotensin II on these variables is described. We can speculate that the impairment in vascular smooth muscle NO production precedes the development of hypertension in SHR and may play a pathophysiologic role in the early blood pressure elevation in genetically hypertensive rats. |
---|---|
ISSN: | 0327-9545 1667-5746 |
DOI: | 10.32604/biocell.2002.26.061 |