Loading…
Differentiating Vascular Pathophysiological States by Objective Analysis of Flow Dynamics
ABSTRACT Background and Purpose. There is an unmet need to classify cerebrovascular conditions physiologically and to assess cerebrovascular system performance. The authors hypothesized that by simultaneously considering the dynamic parameters of flow velocity, acceleration, and pulsatility index (P...
Saved in:
Published in: | Journal of neuroimaging 2004-04, Vol.14 (2), p.97-107 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2547-4912e5ce1a8599fa00986f990f440410fbf19b6469bbdfc0bfb3379bf097d7983 |
---|---|
cites | cdi_FETCH-LOGICAL-c2547-4912e5ce1a8599fa00986f990f440410fbf19b6469bbdfc0bfb3379bf097d7983 |
container_end_page | 107 |
container_issue | 2 |
container_start_page | 97 |
container_title | Journal of neuroimaging |
container_volume | 14 |
creator | Crutchfield, Kevin E. Razumovsky, Alexander Y. Tegeler, Charles H. Mozayeni, B. Robert |
description | ABSTRACT
Background and Purpose. There is an unmet need to classify cerebrovascular conditions physiologically and to assess cerebrovascular system performance. The authors hypothesized that by simultaneously considering the dynamic parameters of flow velocity, acceleration, and pulsatility index (PI) (impedance) in individual Doppler spectrum waveforms, they could develop an objective method to elucidate the pathophysiology of vascular conditions and classify cerebrovascular disorders. This method, dynamic vascular analysis (DVA), is described. Methods. First, a theoretical model was developed to determine how any vascular segment and the ensemble of intracranial vascular segments could be defined according to its dynamic physiological characteristics. Next, the DVA method was applied to 847 anonymous serial complete clinical transcranial Doppler (TCD) studies of patients without regard for their diagnosis to ascertain actual reference ranges and the normality of the distribution curves for each dimension of the 3‐parameter nomogram. The authors applied DVA to 2 clinicalcases to see if they could track the changes in vascular performance of 2 known progressive diseases. Results. The theoretical analysis identified 295,245 possible vascular states for the ensemble of vascular segments in the cerebral circulation. When applied to clinical TCD data, DVA revealed continuous, normally distributed data for the velocity, PI, and logarithm of the acceleration. Conclusions. DVA is proposed as a method for monitoring the physiological state of each cerebral artery segment individually and in ensemble. DVA evaluates the relationship among acceleration (force or pressure), velocity, and PI and provides an objective means to evaluate intracranial vascular segments using the paradigm of the well‐described pressure‐perfusion autoregulation relationship. DVA may be used to study cerebrovascular pathophysiology and to classify, evaluate, and monitor cerebrovascular disorders or systemic disorders with cerebrovascular effects. |
doi_str_mv | 10.1111/j.1552-6569.2004.tb00224.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71839063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71839063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2547-4912e5ce1a8599fa00986f990f440410fbf19b6469bbdfc0bfb3379bf097d7983</originalsourceid><addsrcrecordid>eNqVkMtOGzEUQK0KVCjtL1QWC3Yz-DkeI3WBQnkJkUgFqq4s27HBqTMTxg5k_p6JEsEab2zJ59wrHQAOMSrxcI5nJeacFBWvZEkQYmU2CBHCytUXsP_-tTO8EccFITXbA99Smg0QZoR-BXuYI8k5p_vg31nw3nWuyUHn0DzCB53sMuoOTnR-ahdPfQptbB-D1RH-yTq7BE0Px2bmbA4vDp42Og5Mgq2H57F9hWd9o-fBpu9g1-uY3I_tfQDuz3_fjS6Lm_HF1ej0prCEM1EwiYnj1mFdcym9RkjWlZcSecYQw8gbj6WpWCWNmXqLjDeUCmk8kmIqZE0PwNFm7qJrn5cuZTUPyboYdePaZVIC11Siig7gyQa0XZtS57xadGGuu15hpNZh1Uyt66l1PbUOq7Zh1WqQf263LM3cTT_UbckB-LUBXkN0_SdGq-vxrRSDX2z8kLJbvfu6-68qQQVXf28vlBDV6FJMHtSEvgFdypgL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71839063</pqid></control><display><type>article</type><title>Differentiating Vascular Pathophysiological States by Objective Analysis of Flow Dynamics</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Crutchfield, Kevin E. ; Razumovsky, Alexander Y. ; Tegeler, Charles H. ; Mozayeni, B. Robert</creator><creatorcontrib>Crutchfield, Kevin E. ; Razumovsky, Alexander Y. ; Tegeler, Charles H. ; Mozayeni, B. Robert</creatorcontrib><description>ABSTRACT
Background and Purpose. There is an unmet need to classify cerebrovascular conditions physiologically and to assess cerebrovascular system performance. The authors hypothesized that by simultaneously considering the dynamic parameters of flow velocity, acceleration, and pulsatility index (PI) (impedance) in individual Doppler spectrum waveforms, they could develop an objective method to elucidate the pathophysiology of vascular conditions and classify cerebrovascular disorders. This method, dynamic vascular analysis (DVA), is described. Methods. First, a theoretical model was developed to determine how any vascular segment and the ensemble of intracranial vascular segments could be defined according to its dynamic physiological characteristics. Next, the DVA method was applied to 847 anonymous serial complete clinical transcranial Doppler (TCD) studies of patients without regard for their diagnosis to ascertain actual reference ranges and the normality of the distribution curves for each dimension of the 3‐parameter nomogram. The authors applied DVA to 2 clinicalcases to see if they could track the changes in vascular performance of 2 known progressive diseases. Results. The theoretical analysis identified 295,245 possible vascular states for the ensemble of vascular segments in the cerebral circulation. When applied to clinical TCD data, DVA revealed continuous, normally distributed data for the velocity, PI, and logarithm of the acceleration. Conclusions. DVA is proposed as a method for monitoring the physiological state of each cerebral artery segment individually and in ensemble. DVA evaluates the relationship among acceleration (force or pressure), velocity, and PI and provides an objective means to evaluate intracranial vascular segments using the paradigm of the well‐described pressure‐perfusion autoregulation relationship. DVA may be used to study cerebrovascular pathophysiology and to classify, evaluate, and monitor cerebrovascular disorders or systemic disorders with cerebrovascular effects.</description><identifier>ISSN: 1051-2284</identifier><identifier>EISSN: 1552-6569</identifier><identifier>DOI: 10.1111/j.1552-6569.2004.tb00224.x</identifier><identifier>PMID: 15095553</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult ; Aged ; Aged, 80 and over ; arterial-venous malformation ; arteriosclerosis ; Blood Flow Velocity - physiology ; Blood Pressure - physiology ; Brain - blood supply ; Cerebral Arteries - diagnostic imaging ; Cerebral Arteries - physiopathology ; Cerebrovascular Disorders - classification ; Cerebrovascular Disorders - diagnostic imaging ; Cerebrovascular Disorders - physiopathology ; Cluster Analysis ; congestive heart failure ; Diagnosis, Computer-Assisted - instrumentation ; Diagnosis, Differential ; Dynamic vascular analysis ; Expert Systems - instrumentation ; Female ; Humans ; Image Enhancement - instrumentation ; Image Processing, Computer-Assisted - instrumentation ; Intracranial Arteriovenous Malformations - classification ; Intracranial Arteriovenous Malformations - diagnostic imaging ; Intracranial Arteriovenous Malformations - physiopathology ; Male ; Mathematical Computing ; Probability ; Prospective Studies ; Pulsatile Flow - physiology ; Reference Values ; Regional Blood Flow - physiology ; Sensitivity and Specificity ; sleep apnea ; Sleep Apnea Syndromes - classification ; Sleep Apnea Syndromes - diagnostic imaging ; Sleep Apnea Syndromes - physiopathology ; small vessel disease ; Software Design ; Technology Assessment, Biomedical ; Thalamus - blood supply ; transcranial Doppler ultrasound ; Ultrasonography, Doppler, Transcranial - instrumentation</subject><ispartof>Journal of neuroimaging, 2004-04, Vol.14 (2), p.97-107</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2547-4912e5ce1a8599fa00986f990f440410fbf19b6469bbdfc0bfb3379bf097d7983</citedby><cites>FETCH-LOGICAL-c2547-4912e5ce1a8599fa00986f990f440410fbf19b6469bbdfc0bfb3379bf097d7983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15095553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crutchfield, Kevin E.</creatorcontrib><creatorcontrib>Razumovsky, Alexander Y.</creatorcontrib><creatorcontrib>Tegeler, Charles H.</creatorcontrib><creatorcontrib>Mozayeni, B. Robert</creatorcontrib><title>Differentiating Vascular Pathophysiological States by Objective Analysis of Flow Dynamics</title><title>Journal of neuroimaging</title><addtitle>J Neuroimaging</addtitle><description>ABSTRACT
Background and Purpose. There is an unmet need to classify cerebrovascular conditions physiologically and to assess cerebrovascular system performance. The authors hypothesized that by simultaneously considering the dynamic parameters of flow velocity, acceleration, and pulsatility index (PI) (impedance) in individual Doppler spectrum waveforms, they could develop an objective method to elucidate the pathophysiology of vascular conditions and classify cerebrovascular disorders. This method, dynamic vascular analysis (DVA), is described. Methods. First, a theoretical model was developed to determine how any vascular segment and the ensemble of intracranial vascular segments could be defined according to its dynamic physiological characteristics. Next, the DVA method was applied to 847 anonymous serial complete clinical transcranial Doppler (TCD) studies of patients without regard for their diagnosis to ascertain actual reference ranges and the normality of the distribution curves for each dimension of the 3‐parameter nomogram. The authors applied DVA to 2 clinicalcases to see if they could track the changes in vascular performance of 2 known progressive diseases. Results. The theoretical analysis identified 295,245 possible vascular states for the ensemble of vascular segments in the cerebral circulation. When applied to clinical TCD data, DVA revealed continuous, normally distributed data for the velocity, PI, and logarithm of the acceleration. Conclusions. DVA is proposed as a method for monitoring the physiological state of each cerebral artery segment individually and in ensemble. DVA evaluates the relationship among acceleration (force or pressure), velocity, and PI and provides an objective means to evaluate intracranial vascular segments using the paradigm of the well‐described pressure‐perfusion autoregulation relationship. DVA may be used to study cerebrovascular pathophysiology and to classify, evaluate, and monitor cerebrovascular disorders or systemic disorders with cerebrovascular effects.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>arterial-venous malformation</subject><subject>arteriosclerosis</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Pressure - physiology</subject><subject>Brain - blood supply</subject><subject>Cerebral Arteries - diagnostic imaging</subject><subject>Cerebral Arteries - physiopathology</subject><subject>Cerebrovascular Disorders - classification</subject><subject>Cerebrovascular Disorders - diagnostic imaging</subject><subject>Cerebrovascular Disorders - physiopathology</subject><subject>Cluster Analysis</subject><subject>congestive heart failure</subject><subject>Diagnosis, Computer-Assisted - instrumentation</subject><subject>Diagnosis, Differential</subject><subject>Dynamic vascular analysis</subject><subject>Expert Systems - instrumentation</subject><subject>Female</subject><subject>Humans</subject><subject>Image Enhancement - instrumentation</subject><subject>Image Processing, Computer-Assisted - instrumentation</subject><subject>Intracranial Arteriovenous Malformations - classification</subject><subject>Intracranial Arteriovenous Malformations - diagnostic imaging</subject><subject>Intracranial Arteriovenous Malformations - physiopathology</subject><subject>Male</subject><subject>Mathematical Computing</subject><subject>Probability</subject><subject>Prospective Studies</subject><subject>Pulsatile Flow - physiology</subject><subject>Reference Values</subject><subject>Regional Blood Flow - physiology</subject><subject>Sensitivity and Specificity</subject><subject>sleep apnea</subject><subject>Sleep Apnea Syndromes - classification</subject><subject>Sleep Apnea Syndromes - diagnostic imaging</subject><subject>Sleep Apnea Syndromes - physiopathology</subject><subject>small vessel disease</subject><subject>Software Design</subject><subject>Technology Assessment, Biomedical</subject><subject>Thalamus - blood supply</subject><subject>transcranial Doppler ultrasound</subject><subject>Ultrasonography, Doppler, Transcranial - instrumentation</subject><issn>1051-2284</issn><issn>1552-6569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqVkMtOGzEUQK0KVCjtL1QWC3Yz-DkeI3WBQnkJkUgFqq4s27HBqTMTxg5k_p6JEsEab2zJ59wrHQAOMSrxcI5nJeacFBWvZEkQYmU2CBHCytUXsP_-tTO8EccFITXbA99Smg0QZoR-BXuYI8k5p_vg31nw3nWuyUHn0DzCB53sMuoOTnR-ahdPfQptbB-D1RH-yTq7BE0Px2bmbA4vDp42Og5Mgq2H57F9hWd9o-fBpu9g1-uY3I_tfQDuz3_fjS6Lm_HF1ej0prCEM1EwiYnj1mFdcym9RkjWlZcSecYQw8gbj6WpWCWNmXqLjDeUCmk8kmIqZE0PwNFm7qJrn5cuZTUPyboYdePaZVIC11Siig7gyQa0XZtS57xadGGuu15hpNZh1Uyt66l1PbUOq7Zh1WqQf263LM3cTT_UbckB-LUBXkN0_SdGq-vxrRSDX2z8kLJbvfu6-68qQQVXf28vlBDV6FJMHtSEvgFdypgL</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Crutchfield, Kevin E.</creator><creator>Razumovsky, Alexander Y.</creator><creator>Tegeler, Charles H.</creator><creator>Mozayeni, B. Robert</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200404</creationdate><title>Differentiating Vascular Pathophysiological States by Objective Analysis of Flow Dynamics</title><author>Crutchfield, Kevin E. ; Razumovsky, Alexander Y. ; Tegeler, Charles H. ; Mozayeni, B. Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2547-4912e5ce1a8599fa00986f990f440410fbf19b6469bbdfc0bfb3379bf097d7983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>arterial-venous malformation</topic><topic>arteriosclerosis</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Pressure - physiology</topic><topic>Brain - blood supply</topic><topic>Cerebral Arteries - diagnostic imaging</topic><topic>Cerebral Arteries - physiopathology</topic><topic>Cerebrovascular Disorders - classification</topic><topic>Cerebrovascular Disorders - diagnostic imaging</topic><topic>Cerebrovascular Disorders - physiopathology</topic><topic>Cluster Analysis</topic><topic>congestive heart failure</topic><topic>Diagnosis, Computer-Assisted - instrumentation</topic><topic>Diagnosis, Differential</topic><topic>Dynamic vascular analysis</topic><topic>Expert Systems - instrumentation</topic><topic>Female</topic><topic>Humans</topic><topic>Image Enhancement - instrumentation</topic><topic>Image Processing, Computer-Assisted - instrumentation</topic><topic>Intracranial Arteriovenous Malformations - classification</topic><topic>Intracranial Arteriovenous Malformations - diagnostic imaging</topic><topic>Intracranial Arteriovenous Malformations - physiopathology</topic><topic>Male</topic><topic>Mathematical Computing</topic><topic>Probability</topic><topic>Prospective Studies</topic><topic>Pulsatile Flow - physiology</topic><topic>Reference Values</topic><topic>Regional Blood Flow - physiology</topic><topic>Sensitivity and Specificity</topic><topic>sleep apnea</topic><topic>Sleep Apnea Syndromes - classification</topic><topic>Sleep Apnea Syndromes - diagnostic imaging</topic><topic>Sleep Apnea Syndromes - physiopathology</topic><topic>small vessel disease</topic><topic>Software Design</topic><topic>Technology Assessment, Biomedical</topic><topic>Thalamus - blood supply</topic><topic>transcranial Doppler ultrasound</topic><topic>Ultrasonography, Doppler, Transcranial - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crutchfield, Kevin E.</creatorcontrib><creatorcontrib>Razumovsky, Alexander Y.</creatorcontrib><creatorcontrib>Tegeler, Charles H.</creatorcontrib><creatorcontrib>Mozayeni, B. Robert</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroimaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crutchfield, Kevin E.</au><au>Razumovsky, Alexander Y.</au><au>Tegeler, Charles H.</au><au>Mozayeni, B. Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiating Vascular Pathophysiological States by Objective Analysis of Flow Dynamics</atitle><jtitle>Journal of neuroimaging</jtitle><addtitle>J Neuroimaging</addtitle><date>2004-04</date><risdate>2004</risdate><volume>14</volume><issue>2</issue><spage>97</spage><epage>107</epage><pages>97-107</pages><issn>1051-2284</issn><eissn>1552-6569</eissn><abstract>ABSTRACT
Background and Purpose. There is an unmet need to classify cerebrovascular conditions physiologically and to assess cerebrovascular system performance. The authors hypothesized that by simultaneously considering the dynamic parameters of flow velocity, acceleration, and pulsatility index (PI) (impedance) in individual Doppler spectrum waveforms, they could develop an objective method to elucidate the pathophysiology of vascular conditions and classify cerebrovascular disorders. This method, dynamic vascular analysis (DVA), is described. Methods. First, a theoretical model was developed to determine how any vascular segment and the ensemble of intracranial vascular segments could be defined according to its dynamic physiological characteristics. Next, the DVA method was applied to 847 anonymous serial complete clinical transcranial Doppler (TCD) studies of patients without regard for their diagnosis to ascertain actual reference ranges and the normality of the distribution curves for each dimension of the 3‐parameter nomogram. The authors applied DVA to 2 clinicalcases to see if they could track the changes in vascular performance of 2 known progressive diseases. Results. The theoretical analysis identified 295,245 possible vascular states for the ensemble of vascular segments in the cerebral circulation. When applied to clinical TCD data, DVA revealed continuous, normally distributed data for the velocity, PI, and logarithm of the acceleration. Conclusions. DVA is proposed as a method for monitoring the physiological state of each cerebral artery segment individually and in ensemble. DVA evaluates the relationship among acceleration (force or pressure), velocity, and PI and provides an objective means to evaluate intracranial vascular segments using the paradigm of the well‐described pressure‐perfusion autoregulation relationship. DVA may be used to study cerebrovascular pathophysiology and to classify, evaluate, and monitor cerebrovascular disorders or systemic disorders with cerebrovascular effects.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15095553</pmid><doi>10.1111/j.1552-6569.2004.tb00224.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-2284 |
ispartof | Journal of neuroimaging, 2004-04, Vol.14 (2), p.97-107 |
issn | 1051-2284 1552-6569 |
language | eng |
recordid | cdi_proquest_miscellaneous_71839063 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adult Aged Aged, 80 and over arterial-venous malformation arteriosclerosis Blood Flow Velocity - physiology Blood Pressure - physiology Brain - blood supply Cerebral Arteries - diagnostic imaging Cerebral Arteries - physiopathology Cerebrovascular Disorders - classification Cerebrovascular Disorders - diagnostic imaging Cerebrovascular Disorders - physiopathology Cluster Analysis congestive heart failure Diagnosis, Computer-Assisted - instrumentation Diagnosis, Differential Dynamic vascular analysis Expert Systems - instrumentation Female Humans Image Enhancement - instrumentation Image Processing, Computer-Assisted - instrumentation Intracranial Arteriovenous Malformations - classification Intracranial Arteriovenous Malformations - diagnostic imaging Intracranial Arteriovenous Malformations - physiopathology Male Mathematical Computing Probability Prospective Studies Pulsatile Flow - physiology Reference Values Regional Blood Flow - physiology Sensitivity and Specificity sleep apnea Sleep Apnea Syndromes - classification Sleep Apnea Syndromes - diagnostic imaging Sleep Apnea Syndromes - physiopathology small vessel disease Software Design Technology Assessment, Biomedical Thalamus - blood supply transcranial Doppler ultrasound Ultrasonography, Doppler, Transcranial - instrumentation |
title | Differentiating Vascular Pathophysiological States by Objective Analysis of Flow Dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiating%20Vascular%20Pathophysiological%20States%20by%20Objective%20Analysis%20of%20Flow%20Dynamics&rft.jtitle=Journal%20of%20neuroimaging&rft.au=Crutchfield,%20Kevin%20E.&rft.date=2004-04&rft.volume=14&rft.issue=2&rft.spage=97&rft.epage=107&rft.pages=97-107&rft.issn=1051-2284&rft.eissn=1552-6569&rft_id=info:doi/10.1111/j.1552-6569.2004.tb00224.x&rft_dat=%3Cproquest_cross%3E71839063%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2547-4912e5ce1a8599fa00986f990f440410fbf19b6469bbdfc0bfb3379bf097d7983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71839063&rft_id=info:pmid/15095553&rfr_iscdi=true |