Loading…

Minimal speed of fronts of reaction-convection-diffusion equations

We study the minimal speed of propagating fronts of convection-reaction-diffusion equations of the form u(t)+microphi(u)u(x)=u(xx)+f(u) for positive reaction terms with f(')(0)>0. The function phi(u) is continuous and vanishes at u=0. A variational principle for the minimal speed of the wave...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-03, Vol.69 (3 Pt 1), p.031106-031106, Article 031106
Main Authors: Benguria, R D, Depassier, M C, Méndez, V
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-c65d8dd670d3e8bbffe8bec689d33bc7dbfd87f34040b863d6f31750fa46d2d53
cites cdi_FETCH-LOGICAL-c345t-c65d8dd670d3e8bbffe8bec689d33bc7dbfd87f34040b863d6f31750fa46d2d53
container_end_page 031106
container_issue 3 Pt 1
container_start_page 031106
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 69
creator Benguria, R D
Depassier, M C
Méndez, V
description We study the minimal speed of propagating fronts of convection-reaction-diffusion equations of the form u(t)+microphi(u)u(x)=u(xx)+f(u) for positive reaction terms with f(')(0)>0. The function phi(u) is continuous and vanishes at u=0. A variational principle for the minimal speed of the waves is constructed from which upper and lower bounds are obtained. This permits the a priori assessment of the effect of the convective term on the minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the minimal speed of the fronts. We show that if f(")(u)/sqrt[f(')(0)]+microphi(')(u)
doi_str_mv 10.1103/PhysRevE.69.031106
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71841397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71841397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-c65d8dd670d3e8bbffe8bec689d33bc7dbfd87f34040b863d6f31750fa46d2d53</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRbK3-AReSlbvUmdx5ZamlPqCiiK6HZB4YSTPtTFLovzchETf3fhzOuXAPQtcELwnBcPf-fYwf9rBe8nyJoZf4CZoTxnCageCnA0OegmBshi5i_MEYMpD0HM0IwzLPOJ2jh9eqqbZFncSdtSbxLnHBN20cKNhCt5VvUu2bgx3RVM51safE7rtikOIlOnNFHe3VtBfo63H9uXpON29PL6v7TaqBsjbVnBlpDBfYgJVl6Vw_reYyNwClFqZ0RgoHFFNcSg6GOyCCYVdQbjLDYIFux7u74Pedja3aVlHbui4a67uoBJGUQC56YzYadfAxBuvULvQ_hqMiWA3Nqb_mFM_V2Fwfupmud-XWmv_IVBX8AmVJbOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71841397</pqid></control><display><type>article</type><title>Minimal speed of fronts of reaction-convection-diffusion equations</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Benguria, R D ; Depassier, M C ; Méndez, V</creator><creatorcontrib>Benguria, R D ; Depassier, M C ; Méndez, V</creatorcontrib><description>We study the minimal speed of propagating fronts of convection-reaction-diffusion equations of the form u(t)+microphi(u)u(x)=u(xx)+f(u) for positive reaction terms with f(')(0)&gt;0. The function phi(u) is continuous and vanishes at u=0. A variational principle for the minimal speed of the waves is constructed from which upper and lower bounds are obtained. This permits the a priori assessment of the effect of the convective term on the minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the minimal speed of the fronts. We show that if f(")(u)/sqrt[f(')(0)]+microphi(')(u)&lt;0, then the minimal speed is given by the linear value 2sqrt[f(')(0)], and the convective term has no effect on the minimal speed. The results are illustrated by applying them to the exactly solvable case u(t)+microuu(x)=u(xx)+u(1-u). Results are also given for the density dependent diffusion case u(t)+microphi(u)u(x)=[D(u)u(x)](x)+f(u).</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.69.031106</identifier><identifier>PMID: 15089264</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2004-03, Vol.69 (3 Pt 1), p.031106-031106, Article 031106</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-c65d8dd670d3e8bbffe8bec689d33bc7dbfd87f34040b863d6f31750fa46d2d53</citedby><cites>FETCH-LOGICAL-c345t-c65d8dd670d3e8bbffe8bec689d33bc7dbfd87f34040b863d6f31750fa46d2d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15089264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benguria, R D</creatorcontrib><creatorcontrib>Depassier, M C</creatorcontrib><creatorcontrib>Méndez, V</creatorcontrib><title>Minimal speed of fronts of reaction-convection-diffusion equations</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We study the minimal speed of propagating fronts of convection-reaction-diffusion equations of the form u(t)+microphi(u)u(x)=u(xx)+f(u) for positive reaction terms with f(')(0)&gt;0. The function phi(u) is continuous and vanishes at u=0. A variational principle for the minimal speed of the waves is constructed from which upper and lower bounds are obtained. This permits the a priori assessment of the effect of the convective term on the minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the minimal speed of the fronts. We show that if f(")(u)/sqrt[f(')(0)]+microphi(')(u)&lt;0, then the minimal speed is given by the linear value 2sqrt[f(')(0)], and the convective term has no effect on the minimal speed. The results are illustrated by applying them to the exactly solvable case u(t)+microuu(x)=u(xx)+u(1-u). Results are also given for the density dependent diffusion case u(t)+microphi(u)u(x)=[D(u)u(x)](x)+f(u).</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AUhQdRbK3-AReSlbvUmdx5ZamlPqCiiK6HZB4YSTPtTFLovzchETf3fhzOuXAPQtcELwnBcPf-fYwf9rBe8nyJoZf4CZoTxnCageCnA0OegmBshi5i_MEYMpD0HM0IwzLPOJ2jh9eqqbZFncSdtSbxLnHBN20cKNhCt5VvUu2bgx3RVM51safE7rtikOIlOnNFHe3VtBfo63H9uXpON29PL6v7TaqBsjbVnBlpDBfYgJVl6Vw_reYyNwClFqZ0RgoHFFNcSg6GOyCCYVdQbjLDYIFux7u74Pedja3aVlHbui4a67uoBJGUQC56YzYadfAxBuvULvQ_hqMiWA3Nqb_mFM_V2Fwfupmud-XWmv_IVBX8AmVJbOs</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Benguria, R D</creator><creator>Depassier, M C</creator><creator>Méndez, V</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200403</creationdate><title>Minimal speed of fronts of reaction-convection-diffusion equations</title><author>Benguria, R D ; Depassier, M C ; Méndez, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-c65d8dd670d3e8bbffe8bec689d33bc7dbfd87f34040b863d6f31750fa46d2d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benguria, R D</creatorcontrib><creatorcontrib>Depassier, M C</creatorcontrib><creatorcontrib>Méndez, V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benguria, R D</au><au>Depassier, M C</au><au>Méndez, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal speed of fronts of reaction-convection-diffusion equations</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2004-03</date><risdate>2004</risdate><volume>69</volume><issue>3 Pt 1</issue><spage>031106</spage><epage>031106</epage><pages>031106-031106</pages><artnum>031106</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We study the minimal speed of propagating fronts of convection-reaction-diffusion equations of the form u(t)+microphi(u)u(x)=u(xx)+f(u) for positive reaction terms with f(')(0)&gt;0. The function phi(u) is continuous and vanishes at u=0. A variational principle for the minimal speed of the waves is constructed from which upper and lower bounds are obtained. This permits the a priori assessment of the effect of the convective term on the minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the minimal speed of the fronts. We show that if f(")(u)/sqrt[f(')(0)]+microphi(')(u)&lt;0, then the minimal speed is given by the linear value 2sqrt[f(')(0)], and the convective term has no effect on the minimal speed. The results are illustrated by applying them to the exactly solvable case u(t)+microuu(x)=u(xx)+u(1-u). Results are also given for the density dependent diffusion case u(t)+microphi(u)u(x)=[D(u)u(x)](x)+f(u).</abstract><cop>United States</cop><pmid>15089264</pmid><doi>10.1103/PhysRevE.69.031106</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2004-03, Vol.69 (3 Pt 1), p.031106-031106, Article 031106
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_71841397
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Minimal speed of fronts of reaction-convection-diffusion equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20speed%20of%20fronts%20of%20reaction-convection-diffusion%20equations&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Benguria,%20R%20D&rft.date=2004-03&rft.volume=69&rft.issue=3%20Pt%201&rft.spage=031106&rft.epage=031106&rft.pages=031106-031106&rft.artnum=031106&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.69.031106&rft_dat=%3Cproquest_cross%3E71841397%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-c65d8dd670d3e8bbffe8bec689d33bc7dbfd87f34040b863d6f31750fa46d2d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71841397&rft_id=info:pmid/15089264&rfr_iscdi=true