Loading…
A method for positioning electrodes during surface EMG recordings in lower limb muscles
Purpose: The aim of this work is to provide information about the degree of inter-subject uniformity of location of innervation zone (IZ) in 13 superficial muscles of the lower limb. The availability of such information will allow researchers to standardize and optimize their electrode positioning p...
Saved in:
Published in: | Journal of neuroscience methods 2004-03, Vol.134 (1), p.37-43 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose: The aim of this work is to provide information about the degree of inter-subject uniformity of location of innervation zone (IZ) in 13 superficial muscles of the lower limb. The availability of such information will allow researchers to standardize and optimize their electrode positioning procedure and to obtain accurate and repeatable estimates of surface electromyography (sEMG) signal amplitude, spectral variables and muscle fiber conduction velocity.
Methods: Surface EMG signals from gluteus maximus, gluteus medius, tensor faciae latae, biceps femoris, semitendinosus, vastus medialis obliquus, vastus lateralis, rectus femoris, tibialis anterior, peroneus longus, soleus, gastrocnemius medialis and lateralis muscles of ten healthy male subjects aged between 25 and 34 years (average=29.2 years, S.D.=2.5 years) were recorded to assess individual IZ location and signal quality.
Results: Tensor faciae latae, biceps femoris, semitendinosus, vastus lateralis, gastrocnemius medialis and lateralis showed a high level of both signal quality and IZ location uniformity. In contrast, rectus femoris, gluteus medius and peroneus longus were found to show poor results for both indexes. Gluteus maximus, vastus medialis obliquus and tibialis anterior were found to show high signal quality but low IZ location uniformity. Finally, soleus muscle was found to show low signal quality but high IZ location uniformity.
Conclusions: This study identifies optimal electrode sites for muscles in the lower extremity by providing a standard landmarking technique for the localization of the IZ of each muscle so that surface EMG electrodes can be properly positioned between the IZ and a tendon. |
---|---|
ISSN: | 0165-0270 1872-678X |
DOI: | 10.1016/j.jneumeth.2003.10.014 |