Loading…
Influence of hydrodynamics on many-particle diffusion in 2D colloidal suspensions
We study many-particle diffusion in 2D colloidal suspensions with full hydrodynamic interactions through a novel mesoscopic simulation technique. We focus on the behaviour of the effective scaled tracer and collective-diffusion coefficients DT(rho)/D0 and DC(rho)/D0 respectively, where D0 is the sin...
Saved in:
Published in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2004-03, Vol.13 (3), p.267-275 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study many-particle diffusion in 2D colloidal suspensions with full hydrodynamic interactions through a novel mesoscopic simulation technique. We focus on the behaviour of the effective scaled tracer and collective-diffusion coefficients DT(rho)/D0 and DC(rho)/D0 respectively, where D0 is the single-particle diffusion coefficient, as a function of the density of the colloids rho. At low Schmidt numbers Sc - 1, we find that hydrodynamics has essentially no effect on the behaviour of DT (rho)/D0. At larger Sc, DT (rho)/D0 seems to be enhanced at all densities, although the differences compared to the case without hydrodynamics are rather minor. The collective-diffusion coefficient, on the other hand, is much more strongly coupled to hydrodynamical conservation laws and is distinctly different from the purely dissipative case without hydrodynamic interactions. |
---|---|
ISSN: | 1292-8941 1292-895X |
DOI: | 10.1140/epje/i2003-10075-9 |