Loading…
Targeted Mutation of the MLN64 START Domain Causes Only Modest Alterations in Cellular Sterol Metabolism
The StAR-related lipid transfer (START) domain, first identified in the steroidogenic acute regulatory protein (StAR), is involved in the intracellular trafficking of lipids. Sixteen mammalian START domain-containing proteins have been identified to date. StAR, a protein targeted to mitochondria, st...
Saved in:
Published in: | The Journal of biological chemistry 2004-04, Vol.279 (18), p.19276-19285 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The StAR-related lipid transfer (START) domain, first identified in the steroidogenic acute regulatory protein (StAR), is
involved in the intracellular trafficking of lipids. Sixteen mammalian START domain-containing proteins have been identified
to date. StAR, a protein targeted to mitochondria, stimulates the movement of cholesterol from the outer to the inner mitochondrial
membranes, where it is metabolized into pregnenolone in steroidogenic cells. MLN64, the START domain protein most closely
related to StAR, is localized to late endosomes along with other proteins involved in sterol trafficking, including NPC1 and
NPC2, where it has been postulated to participate in sterol distribution to intracellular membranes. To investigate the role
of MLN64 in sterol metabolism, we created mice with a targeted mutation in the Mln64 START domain, expecting to find a phenotype similar to that in humans and mice lacking NPC1 or NPC2 (progressive neurodegenerative
symptoms, free cholesterol accumulation in lysosomes). Unexpectedly, mice homozygous for the Mln64 mutant allele were viable, neurologically intact, and fertile. No significant alterations in plasma lipid levels, liver lipid
content and distribution, and expression of genes involved in sterol metabolism were observed, except for an increase in sterol
ester storage in mutant mice fed a high fat diet. Embryonic fibroblast cells transfected with the cholesterol side-chain cleavage
system and primary cultures of granulosa cells from Mln64 mutant mice showed defects in sterol trafficking as reflected in reduced conversion of endogenous cholesterol to steroid
hormones. These observations suggest that the Mln64 START domain is largely dispensable for sterol metabolism in mice. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M400717200 |