Loading…
Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI
Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighte...
Saved in:
Published in: | Magnetic resonance in medicine 2004-05, Vol.51 (5), p.961-968 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3 |
container_end_page | 968 |
container_issue | 5 |
container_start_page | 961 |
container_title | Magnetic resonance in medicine |
container_volume | 51 |
creator | Johnson, Glyn Wetzel, Stephan G Cha, Soonmee Babb, James Tofts, Paul S |
description | Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighted images of the first pass of the bolus. However, the theory assumes that the tracer (i.e., contrast agent) remains intravascular, which is often not the case when the blood-brain barrier (BBB) is damaged. Furthermore, the method provides no information on the vascular transfer constant. Pharmacokinetic modeling analyses of T(1)-weighted images after first pass do give values of the vascular transfer constant and the volume of the extravascular, extracellular space (EES), but they generally are unable to give estimates of blood volume. In this study we apply pharmacokinetic modeling to dynamic T(2) (*)-weighted imaging of the first pass of a tracer bolus. This method, which we call first-pass pharmacokinetic modeling (FPPM), gives an estimate of the blood volume, vascular transfer constant, and EES volume. The method was applied to a group of 26 patients with surgically proven tumors (10 glioblastomas multiforme (GBMs), six lymphomas, and 10 meningiomas). The measurements of the blood volume and transfer constant were consistent with the known physiology of these tumors. |
doi_str_mv | 10.1002/mrm.20049 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71891847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71891847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMobk4v_AOSK3FgZ5ImS3opw4_BhiDzuiTp6VZp0pm0yv69nRt49R5envNePAhdUzKhhLAHF9yEEcKzEzSkgrGEiYyfoiGRnCQpzfgAXcT4SQjJMsnP0YAKythUqiFaL0HHLlR-jU3dNAX-burOAda-P3W0Xa0DboP2sYSAbeNjq32Ly9A4XOy8dpW9x6s7Nk5-oFpvWij2UP8Q2wT8RnvbN8v3-SU6K3Ud4eqYI_Tx_LSavSaLt5f57HGRWMZVmygpiNAEjFDlVKcAoiiVLIEpxtJUGpgaVkgBhigpuWGcZJwzBlYZQajQ6QjdHna3ofnqILa5q6KFutYemi7mkqqMKi57cHwAbWhiDFDm21A5HXY5Jfneat5bzf-s9uzNcbQzDop_8qgx_QV10HLH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71891847</pqid></control><display><type>article</type><title>Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI</title><source>Wiley</source><creator>Johnson, Glyn ; Wetzel, Stephan G ; Cha, Soonmee ; Babb, James ; Tofts, Paul S</creator><creatorcontrib>Johnson, Glyn ; Wetzel, Stephan G ; Cha, Soonmee ; Babb, James ; Tofts, Paul S</creatorcontrib><description>Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighted images of the first pass of the bolus. However, the theory assumes that the tracer (i.e., contrast agent) remains intravascular, which is often not the case when the blood-brain barrier (BBB) is damaged. Furthermore, the method provides no information on the vascular transfer constant. Pharmacokinetic modeling analyses of T(1)-weighted images after first pass do give values of the vascular transfer constant and the volume of the extravascular, extracellular space (EES), but they generally are unable to give estimates of blood volume. In this study we apply pharmacokinetic modeling to dynamic T(2) (*)-weighted imaging of the first pass of a tracer bolus. This method, which we call first-pass pharmacokinetic modeling (FPPM), gives an estimate of the blood volume, vascular transfer constant, and EES volume. The method was applied to a group of 26 patients with surgically proven tumors (10 glioblastomas multiforme (GBMs), six lymphomas, and 10 meningiomas). The measurements of the blood volume and transfer constant were consistent with the known physiology of these tumors.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20049</identifier><identifier>PMID: 15122678</identifier><language>eng</language><publisher>United States</publisher><subject>Blood Volume - physiology ; Brain Neoplasms - physiopathology ; Cerebrovascular Circulation - physiology ; Contrast Media ; Extracellular Space - physiology ; Humans ; Magnetic Resonance Imaging ; Microcirculation - physiology ; Models, Biological</subject><ispartof>Magnetic resonance in medicine, 2004-05, Vol.51 (5), p.961-968</ispartof><rights>Copyright 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3</citedby><cites>FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15122678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Glyn</creatorcontrib><creatorcontrib>Wetzel, Stephan G</creatorcontrib><creatorcontrib>Cha, Soonmee</creatorcontrib><creatorcontrib>Babb, James</creatorcontrib><creatorcontrib>Tofts, Paul S</creatorcontrib><title>Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighted images of the first pass of the bolus. However, the theory assumes that the tracer (i.e., contrast agent) remains intravascular, which is often not the case when the blood-brain barrier (BBB) is damaged. Furthermore, the method provides no information on the vascular transfer constant. Pharmacokinetic modeling analyses of T(1)-weighted images after first pass do give values of the vascular transfer constant and the volume of the extravascular, extracellular space (EES), but they generally are unable to give estimates of blood volume. In this study we apply pharmacokinetic modeling to dynamic T(2) (*)-weighted imaging of the first pass of a tracer bolus. This method, which we call first-pass pharmacokinetic modeling (FPPM), gives an estimate of the blood volume, vascular transfer constant, and EES volume. The method was applied to a group of 26 patients with surgically proven tumors (10 glioblastomas multiforme (GBMs), six lymphomas, and 10 meningiomas). The measurements of the blood volume and transfer constant were consistent with the known physiology of these tumors.</description><subject>Blood Volume - physiology</subject><subject>Brain Neoplasms - physiopathology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Contrast Media</subject><subject>Extracellular Space - physiology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Microcirculation - physiology</subject><subject>Models, Biological</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAUhoMobk4v_AOSK3FgZ5ImS3opw4_BhiDzuiTp6VZp0pm0yv69nRt49R5envNePAhdUzKhhLAHF9yEEcKzEzSkgrGEiYyfoiGRnCQpzfgAXcT4SQjJMsnP0YAKythUqiFaL0HHLlR-jU3dNAX-burOAda-P3W0Xa0DboP2sYSAbeNjq32Ly9A4XOy8dpW9x6s7Nk5-oFpvWij2UP8Q2wT8RnvbN8v3-SU6K3Ud4eqYI_Tx_LSavSaLt5f57HGRWMZVmygpiNAEjFDlVKcAoiiVLIEpxtJUGpgaVkgBhigpuWGcZJwzBlYZQajQ6QjdHna3ofnqILa5q6KFutYemi7mkqqMKi57cHwAbWhiDFDm21A5HXY5Jfneat5bzf-s9uzNcbQzDop_8qgx_QV10HLH</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Johnson, Glyn</creator><creator>Wetzel, Stephan G</creator><creator>Cha, Soonmee</creator><creator>Babb, James</creator><creator>Tofts, Paul S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200405</creationdate><title>Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI</title><author>Johnson, Glyn ; Wetzel, Stephan G ; Cha, Soonmee ; Babb, James ; Tofts, Paul S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Blood Volume - physiology</topic><topic>Brain Neoplasms - physiopathology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Contrast Media</topic><topic>Extracellular Space - physiology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Microcirculation - physiology</topic><topic>Models, Biological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Glyn</creatorcontrib><creatorcontrib>Wetzel, Stephan G</creatorcontrib><creatorcontrib>Cha, Soonmee</creatorcontrib><creatorcontrib>Babb, James</creatorcontrib><creatorcontrib>Tofts, Paul S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Glyn</au><au>Wetzel, Stephan G</au><au>Cha, Soonmee</au><au>Babb, James</au><au>Tofts, Paul S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2004-05</date><risdate>2004</risdate><volume>51</volume><issue>5</issue><spage>961</spage><epage>968</epage><pages>961-968</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighted images of the first pass of the bolus. However, the theory assumes that the tracer (i.e., contrast agent) remains intravascular, which is often not the case when the blood-brain barrier (BBB) is damaged. Furthermore, the method provides no information on the vascular transfer constant. Pharmacokinetic modeling analyses of T(1)-weighted images after first pass do give values of the vascular transfer constant and the volume of the extravascular, extracellular space (EES), but they generally are unable to give estimates of blood volume. In this study we apply pharmacokinetic modeling to dynamic T(2) (*)-weighted imaging of the first pass of a tracer bolus. This method, which we call first-pass pharmacokinetic modeling (FPPM), gives an estimate of the blood volume, vascular transfer constant, and EES volume. The method was applied to a group of 26 patients with surgically proven tumors (10 glioblastomas multiforme (GBMs), six lymphomas, and 10 meningiomas). The measurements of the blood volume and transfer constant were consistent with the known physiology of these tumors.</abstract><cop>United States</cop><pmid>15122678</pmid><doi>10.1002/mrm.20049</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2004-05, Vol.51 (5), p.961-968 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_71891847 |
source | Wiley |
subjects | Blood Volume - physiology Brain Neoplasms - physiopathology Cerebrovascular Circulation - physiology Contrast Media Extracellular Space - physiology Humans Magnetic Resonance Imaging Microcirculation - physiology Models, Biological |
title | Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20blood%20volume%20and%20vascular%20transfer%20constant%20from%20dynamic,%20T(2)-weighted%20contrast-enhanced%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Johnson,%20Glyn&rft.date=2004-05&rft.volume=51&rft.issue=5&rft.spage=961&rft.epage=968&rft.pages=961-968&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20049&rft_dat=%3Cproquest_cross%3E71891847%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71891847&rft_id=info:pmid/15122678&rfr_iscdi=true |