Loading…

Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI

Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighte...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2004-05, Vol.51 (5), p.961-968
Main Authors: Johnson, Glyn, Wetzel, Stephan G, Cha, Soonmee, Babb, James, Tofts, Paul S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3
cites cdi_FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3
container_end_page 968
container_issue 5
container_start_page 961
container_title Magnetic resonance in medicine
container_volume 51
creator Johnson, Glyn
Wetzel, Stephan G
Cha, Soonmee
Babb, James
Tofts, Paul S
description Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighted images of the first pass of the bolus. However, the theory assumes that the tracer (i.e., contrast agent) remains intravascular, which is often not the case when the blood-brain barrier (BBB) is damaged. Furthermore, the method provides no information on the vascular transfer constant. Pharmacokinetic modeling analyses of T(1)-weighted images after first pass do give values of the vascular transfer constant and the volume of the extravascular, extracellular space (EES), but they generally are unable to give estimates of blood volume. In this study we apply pharmacokinetic modeling to dynamic T(2) (*)-weighted imaging of the first pass of a tracer bolus. This method, which we call first-pass pharmacokinetic modeling (FPPM), gives an estimate of the blood volume, vascular transfer constant, and EES volume. The method was applied to a group of 26 patients with surgically proven tumors (10 glioblastomas multiforme (GBMs), six lymphomas, and 10 meningiomas). The measurements of the blood volume and transfer constant were consistent with the known physiology of these tumors.
doi_str_mv 10.1002/mrm.20049
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71891847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71891847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMobk4v_AOSK3FgZ5ImS3opw4_BhiDzuiTp6VZp0pm0yv69nRt49R5envNePAhdUzKhhLAHF9yEEcKzEzSkgrGEiYyfoiGRnCQpzfgAXcT4SQjJMsnP0YAKythUqiFaL0HHLlR-jU3dNAX-burOAda-P3W0Xa0DboP2sYSAbeNjq32Ly9A4XOy8dpW9x6s7Nk5-oFpvWij2UP8Q2wT8RnvbN8v3-SU6K3Ud4eqYI_Tx_LSavSaLt5f57HGRWMZVmygpiNAEjFDlVKcAoiiVLIEpxtJUGpgaVkgBhigpuWGcZJwzBlYZQajQ6QjdHna3ofnqILa5q6KFutYemi7mkqqMKi57cHwAbWhiDFDm21A5HXY5Jfneat5bzf-s9uzNcbQzDop_8qgx_QV10HLH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71891847</pqid></control><display><type>article</type><title>Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI</title><source>Wiley</source><creator>Johnson, Glyn ; Wetzel, Stephan G ; Cha, Soonmee ; Babb, James ; Tofts, Paul S</creator><creatorcontrib>Johnson, Glyn ; Wetzel, Stephan G ; Cha, Soonmee ; Babb, James ; Tofts, Paul S</creatorcontrib><description>Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighted images of the first pass of the bolus. However, the theory assumes that the tracer (i.e., contrast agent) remains intravascular, which is often not the case when the blood-brain barrier (BBB) is damaged. Furthermore, the method provides no information on the vascular transfer constant. Pharmacokinetic modeling analyses of T(1)-weighted images after first pass do give values of the vascular transfer constant and the volume of the extravascular, extracellular space (EES), but they generally are unable to give estimates of blood volume. In this study we apply pharmacokinetic modeling to dynamic T(2) (*)-weighted imaging of the first pass of a tracer bolus. This method, which we call first-pass pharmacokinetic modeling (FPPM), gives an estimate of the blood volume, vascular transfer constant, and EES volume. The method was applied to a group of 26 patients with surgically proven tumors (10 glioblastomas multiforme (GBMs), six lymphomas, and 10 meningiomas). The measurements of the blood volume and transfer constant were consistent with the known physiology of these tumors.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20049</identifier><identifier>PMID: 15122678</identifier><language>eng</language><publisher>United States</publisher><subject>Blood Volume - physiology ; Brain Neoplasms - physiopathology ; Cerebrovascular Circulation - physiology ; Contrast Media ; Extracellular Space - physiology ; Humans ; Magnetic Resonance Imaging ; Microcirculation - physiology ; Models, Biological</subject><ispartof>Magnetic resonance in medicine, 2004-05, Vol.51 (5), p.961-968</ispartof><rights>Copyright 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3</citedby><cites>FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15122678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Glyn</creatorcontrib><creatorcontrib>Wetzel, Stephan G</creatorcontrib><creatorcontrib>Cha, Soonmee</creatorcontrib><creatorcontrib>Babb, James</creatorcontrib><creatorcontrib>Tofts, Paul S</creatorcontrib><title>Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighted images of the first pass of the bolus. However, the theory assumes that the tracer (i.e., contrast agent) remains intravascular, which is often not the case when the blood-brain barrier (BBB) is damaged. Furthermore, the method provides no information on the vascular transfer constant. Pharmacokinetic modeling analyses of T(1)-weighted images after first pass do give values of the vascular transfer constant and the volume of the extravascular, extracellular space (EES), but they generally are unable to give estimates of blood volume. In this study we apply pharmacokinetic modeling to dynamic T(2) (*)-weighted imaging of the first pass of a tracer bolus. This method, which we call first-pass pharmacokinetic modeling (FPPM), gives an estimate of the blood volume, vascular transfer constant, and EES volume. The method was applied to a group of 26 patients with surgically proven tumors (10 glioblastomas multiforme (GBMs), six lymphomas, and 10 meningiomas). The measurements of the blood volume and transfer constant were consistent with the known physiology of these tumors.</description><subject>Blood Volume - physiology</subject><subject>Brain Neoplasms - physiopathology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Contrast Media</subject><subject>Extracellular Space - physiology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Microcirculation - physiology</subject><subject>Models, Biological</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAUhoMobk4v_AOSK3FgZ5ImS3opw4_BhiDzuiTp6VZp0pm0yv69nRt49R5envNePAhdUzKhhLAHF9yEEcKzEzSkgrGEiYyfoiGRnCQpzfgAXcT4SQjJMsnP0YAKythUqiFaL0HHLlR-jU3dNAX-burOAda-P3W0Xa0DboP2sYSAbeNjq32Ly9A4XOy8dpW9x6s7Nk5-oFpvWij2UP8Q2wT8RnvbN8v3-SU6K3Ud4eqYI_Tx_LSavSaLt5f57HGRWMZVmygpiNAEjFDlVKcAoiiVLIEpxtJUGpgaVkgBhigpuWGcZJwzBlYZQajQ6QjdHna3ofnqILa5q6KFutYemi7mkqqMKi57cHwAbWhiDFDm21A5HXY5Jfneat5bzf-s9uzNcbQzDop_8qgx_QV10HLH</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Johnson, Glyn</creator><creator>Wetzel, Stephan G</creator><creator>Cha, Soonmee</creator><creator>Babb, James</creator><creator>Tofts, Paul S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200405</creationdate><title>Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI</title><author>Johnson, Glyn ; Wetzel, Stephan G ; Cha, Soonmee ; Babb, James ; Tofts, Paul S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Blood Volume - physiology</topic><topic>Brain Neoplasms - physiopathology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Contrast Media</topic><topic>Extracellular Space - physiology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Microcirculation - physiology</topic><topic>Models, Biological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Glyn</creatorcontrib><creatorcontrib>Wetzel, Stephan G</creatorcontrib><creatorcontrib>Cha, Soonmee</creatorcontrib><creatorcontrib>Babb, James</creatorcontrib><creatorcontrib>Tofts, Paul S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Glyn</au><au>Wetzel, Stephan G</au><au>Cha, Soonmee</au><au>Babb, James</au><au>Tofts, Paul S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2004-05</date><risdate>2004</risdate><volume>51</volume><issue>5</issue><spage>961</spage><epage>968</epage><pages>961-968</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighted images of the first pass of the bolus. However, the theory assumes that the tracer (i.e., contrast agent) remains intravascular, which is often not the case when the blood-brain barrier (BBB) is damaged. Furthermore, the method provides no information on the vascular transfer constant. Pharmacokinetic modeling analyses of T(1)-weighted images after first pass do give values of the vascular transfer constant and the volume of the extravascular, extracellular space (EES), but they generally are unable to give estimates of blood volume. In this study we apply pharmacokinetic modeling to dynamic T(2) (*)-weighted imaging of the first pass of a tracer bolus. This method, which we call first-pass pharmacokinetic modeling (FPPM), gives an estimate of the blood volume, vascular transfer constant, and EES volume. The method was applied to a group of 26 patients with surgically proven tumors (10 glioblastomas multiforme (GBMs), six lymphomas, and 10 meningiomas). The measurements of the blood volume and transfer constant were consistent with the known physiology of these tumors.</abstract><cop>United States</cop><pmid>15122678</pmid><doi>10.1002/mrm.20049</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2004-05, Vol.51 (5), p.961-968
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_71891847
source Wiley
subjects Blood Volume - physiology
Brain Neoplasms - physiopathology
Cerebrovascular Circulation - physiology
Contrast Media
Extracellular Space - physiology
Humans
Magnetic Resonance Imaging
Microcirculation - physiology
Models, Biological
title Measuring blood volume and vascular transfer constant from dynamic, T(2)-weighted contrast-enhanced MRI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20blood%20volume%20and%20vascular%20transfer%20constant%20from%20dynamic,%20T(2)-weighted%20contrast-enhanced%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Johnson,%20Glyn&rft.date=2004-05&rft.volume=51&rft.issue=5&rft.spage=961&rft.epage=968&rft.pages=961-968&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20049&rft_dat=%3Cproquest_cross%3E71891847%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c248t-87505a0eb58f6a3ee5df87fe2822337be6b2d75eb08774b24094422ec8b5015a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71891847&rft_id=info:pmid/15122678&rfr_iscdi=true