Loading…

Bilateral symmetry of biomechanical properties in mouse femora

Bone healing and remodeling are commonly examined in animal models by comparing one femur (experimental) to the contralateral femur (control) with the assumption that they are identical with respect to their biomechanical properties. While past studies have characterized the symmetry in geometrical...

Full description

Saved in:
Bibliographic Details
Published in:Medical engineering & physics 2004-05, Vol.26 (4), p.349-353
Main Authors: Margolis, David S, Lien, Yeong-Hau H, Lai, Li-Wen, Szivek, John A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bone healing and remodeling are commonly examined in animal models by comparing one femur (experimental) to the contralateral femur (control) with the assumption that they are identical with respect to their biomechanical properties. While past studies have characterized the symmetry in geometrical properties in many types of animal bones, few studies have compared the symmetry in the biomechanical properties. The purpose of this study was to determine whether there is symmetry in the mechanical properties of mouse femora. Strain gauges were attached to the posterior surface of the femora of C57BL/6 mice, parallel to the long axis of the bone. The femora were mechanically tested in cantilever bending while strain values were recorded. Moments of inertia, cortical areas, and moduli of elasticity were determined from strains and cross-sectional properties. Mouse femora demonstrated an average strain difference of 0.4% in tension and 1.4% in compression. Elastic moduli differed by 6.6% and 0.9% in tension and compression, respectively, and failure strength differed by an average of 2.0%. Statistical analysis showed there were no significant differences in strain, modulus, or failure load values for the mice, indicating mechanical and geometrical symmetry of mouse femora in cantilever bending.
ISSN:1350-4533
1873-4030
DOI:10.1016/j.medengphy.2003.11.002