Loading…
The Barley MLO Modulator of Defense and Cell Death Is Responsive to Biotic and Abiotic Stress Stimuli
Lack of the barley (Hordeum vulgare) seven-transmembrane domain MLO protein confers resistance against the fungal pathogen Blumeria graminis f. sp. hordei (Bgh). To broaden the basis for MLO structure/function studies, we sequenced additional mlo resistance alleles, two of which confer only partial...
Saved in:
Published in: | Plant physiology (Bethesda) 2002-07, Vol.129 (3), p.1076-1085 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lack of the barley (Hordeum vulgare) seven-transmembrane domain MLO protein confers resistance against the fungal pathogen Blumeria graminis f. sp. hordei (Bgh). To broaden the basis for MLO structure/function studies, we sequenced additional mlo resistance alleles, two of which confer only partial resistance. Wild-type MLO dampens the cell wall-restricted hydrogen peroxide burst at points of attempted fungal penetration of the epidermal cell wall, and in subtending mesophyll cells, it suppresses a second oxidative burst and cell death. Although the Bgh-induced cell death in mlo plants is spatially and temporally separated from resistance, we show that the two processes are linked. Uninoculated mutant mlo plants exhibit spontaneous mesophyll cell death that appears to be part of accelerated leaf senescence. Mlo transcript abundance increases in response to Bgh, rice (Oryza sativa) blast, wounding, paraquat treatment, a wheat powdery mildew-derived carbohydrate elicitor, and during leaf senescence. This suggests a broad involvement of Mlo in cell death protection and in responses to biotic and abiotic stresses. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.010954 |