Loading…

Effect of neuronal nitric oxide synthase inhibition on Ca2+/calmodulin kinase kinase and Ca2+/calmodulin kinase IV activity during hypoxia in cortical nuclei of newborn piglets

The present study tests the hypothesis that cerebral tissue hypoxia results in increased Ca(2+)/calmodulin (CaM) kinase kinase activity and that the administration of nitric oxide synthase inhibitors (N-nitro-l-arginine [NNLA], or 7-nitroindazole sodium [7-NINA]) prior to the onset of hypoxia will p...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 2004, Vol.125 (4), p.937-945
Main Authors: ZUBROW, A. B, DELIVORIA-PAPADOPOULOS, M, FRITZ, K. I, MISHRA, O. P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study tests the hypothesis that cerebral tissue hypoxia results in increased Ca(2+)/calmodulin (CaM) kinase kinase activity and that the administration of nitric oxide synthase inhibitors (N-nitro-l-arginine [NNLA], or 7-nitroindazole sodium [7-NINA]) prior to the onset of hypoxia will prevent the hypoxia-induced increase in the enzyme activity. To test this hypothesis, CaM kinase kinase and CaM kinase IV activities were determined in normoxic, hypoxic, NNLA-treated hypoxic, and 7-NINA-treated hypoxic piglets. Hypoxia was induced (FiO(2)=0.05-0.08x1 h) and confirmed biochemically by tissue levels of ATP and phosphocreatine. CaM kinase kinase activity was determined in a medium containing protein kinase and phosphatase inhibitors, calmodulin, and a specifically designed CaM kinase kinase target peptide. CaM kinase IV activity was determined by (33)P-incorporation into syntide-2 in a buffer containing protein kinase and phosphatase inhibitors. Compared with normoxic animals, ATP and phosphocreatine levels were significantly lower in all hypoxic piglets whether or not pretreated with nitric oxide synthase inhibitors. There was a significant difference among CaM kinase kinase activity (pmol/mg protein/min) in normoxic (76.84+/-14.1), hypoxic (138.86+/-18.2, P
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2004.02.027