Loading…

Influence of β-subunit on thermal and high-pressure process stability of tomato polygalacturonase

Polygalacturonase (PG; E.C. 3.2.1.15) was extracted from tomato fruit and purified by cation-exchange chromatography. Two peaks containing PG activity were detected: the first denotes a thermolabile PG fraction (PG2) and the second a thermostable fraction (PG1). PG1 is a dimer of PG2 and a heat-stab...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2004-06, Vol.86 (5), p.543-549
Main Authors: Peeters, L, Fachin, D, Smout, C, Loey, A. van, Hendrickx, M.E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polygalacturonase (PG; E.C. 3.2.1.15) was extracted from tomato fruit and purified by cation-exchange chromatography. Two peaks containing PG activity were detected: the first denotes a thermolabile PG fraction (PG2) and the second a thermostable fraction (PG1). PG1 is a dimer of PG2 and a heat-stable protein called the beta-subunit. In contrast to its resistance to heat, PG is easily inactivated at elevated pressure. Although the thermal stability of purified tomato PG1 and PG2 is distinctly different, they show an identical pressure stability. To gain further insight into the thermal and pressure stability of both PG isoenzymes, the in vitro recombination of PG2 and beta-subunit was studied. After severe heat (up to 140°C for 5 min) and pressure (up to 800 MPa for 15 min) treatments, the residual fractions containing the beta-subunit were able to convert PG2 into the heat-stable PG1, showing the extreme thermal and pressure stability of the beta-subunit. PG1 was detected in heat-treated tomato juice and, to a lesser extent, in tomato pieces. In contrast, as was the case for purified PG, no pressure-stable fraction was observed when tomato juice and pieces were treated under pressure. These data clearly show the differing behavior of the PG1-PG2-beta-subunit system under thermal and high-pressure treatments and offer the possibility of inactivating tomato PG using high pressure without the need for high temperatures.
ISSN:0006-3592
1097-0290
DOI:10.1002/bit.20134