Loading…

Elicitor-activated phospholipase A(2) generates lysophosphatidylcholines that mobilize the vacuolar H(+) pool for pH signaling via the activation of Na(+)-dependent proton fluxes

The elicitation of phytoalexin biosynthesis in cultured cells of California poppy involves a shift of cytoplasmic pH via the transient efflux of vacuolar protons. Intracellular effectors of vacuolar proton transport were identified by a novel in situ approach based on the selective permeabilization...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2002-07, Vol.14 (7), p.1509-1525
Main Authors: Viehweger, Katrin, Dordschbal, Batsuch, Roos, Werner
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The elicitation of phytoalexin biosynthesis in cultured cells of California poppy involves a shift of cytoplasmic pH via the transient efflux of vacuolar protons. Intracellular effectors of vacuolar proton transport were identified by a novel in situ approach based on the selective permeabilization of the plasma membrane for molecules of < or = 10 kD. Subsequent fluorescence imaging of the vacuolar pH correctly reported experimental changes of activity of the tonoplast proton transporters. Lysophosphatidylcholine (LPC) caused a transient increase of the vacuolar pH by increasing the Na(+) sensitivity of a Na(+)-dependent proton efflux that was inhibited by amiloride. In intact cells, yeast elicitor activated phospholipase A(2), as demonstrated by the formation of LPC from fluorescent substrate analogs, and caused a transient increase of endogenous LPC, as determined by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. It is suggested that LPC generated by phospholipase A(2) at the plasma membrane transduces the elicitor-triggered signal into the activation of a tonoplast H(+)/Na(+) antiporter.
ISSN:1040-4651
1532-298X
DOI:10.1105/tpc.002329