Loading…

The Microtubule Stabilizing Agent Laulimalide Does Not Bind in the Taxoid Site, Kills Cells Resistant to Paclitaxel and Epothilones, and May Not Require Its Epoxide Moiety for Activity

Laulimalide is a cytotoxic natural product that stabilizes microtubules. The compound enhances tubulin assembly, and laulimalide is quantitatively comparable to paclitaxel in its effects on the reaction. Laulimalide is also active in P-glycoprotein overexpressing cells, while isolaulimalide, a conge...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2002-07, Vol.41 (29), p.9109-9115
Main Authors: Pryor, Donald E, O'Brate, Aurora, Bilcer, Geoffrey, Díaz, J. Fernando, Wang, Yuefang, Wang, Yong, Kabaki, Mikio, Jung, M. Katherine, Andreu, José M, Ghosh, Arun K, Giannakakou, Paraskevi, Hamel, Ernest
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Laulimalide is a cytotoxic natural product that stabilizes microtubules. The compound enhances tubulin assembly, and laulimalide is quantitatively comparable to paclitaxel in its effects on the reaction. Laulimalide is also active in P-glycoprotein overexpressing cells, while isolaulimalide, a congener without the drug's epoxide moiety, was reported to have negligible cytotoxic and biochemical activity [Mooberry et al. (1999) Cancer Res. 59, 653−660]. We report here that laulimalide binds at a site on tubulin polymer that is distinct from the taxoid site. We found that laulimalide, while as active as paclitaxel, epothilone A, and eleutherobin in promoting the assembly of cold-stable microtubules, was unable to inhibit the binding of radiolabeled paclitaxel or of 7-O-[N-(2,7-difluoro-4'-fluoresceincarbonyl)-l-alanyl]paclitaxel, a fluorescent paclitaxel derivative, to tubulin. Confirming this observation, we demonstrated that microtubules formed in the presence of both laulimalide and paclitaxel contained near-molar quantities, relative to tubulin, of both drugs. Laulimalide was active against cell lines resistant to paclitaxel or epothilones A and B on the basis of mutations in the M40 human β-tubulin gene. We also report that a laulimalide analogue lacking the epoxide moiety, while less active than laulimalide in biochemical and cellular systems, is probably more active than isolaulimalide. Further exploration of the role of the epoxide in the interaction of laulimalide with tubulin is therefore justified.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi020211b