Loading…
Integrative analysis of multiple gene expression profiles applied to liver cancer study
A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification resu...
Saved in:
Published in: | FEBS letters 2004-05, Vol.565 (1), p.93-100 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023 |
---|---|
cites | cdi_FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023 |
container_end_page | 100 |
container_issue | 1 |
container_start_page | 93 |
container_title | FEBS letters |
container_volume | 565 |
creator | Kyoon Choi, Jung Young Choi, Jong Ghon Kim, Dae Wook Choi, Dong Yeo Kim, Bu Ho Lee, Kee Il Yeom, Young Sook Yoo, Hyang Joon Yoo, Ook Kim, Sangsoo |
description | A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification result of our studies and that of published studies, we found that single microarray analysis might lead to false findings. To avoid those pitfalls of single-set analyses, we employed our effect size method to integrate multiple datasets. Of 9982 genes analyzed, 477 significant genes were identified with a false discovery rate of 10%. Gene ontology (GO) terms associated with these genes were explored to validate our method in the biological context with respect to HCC. Furthermore, it was demonstrated that the data integration process increases the sensitivity of analysis and allows small but consistent expression changes to be detected. These integration-driven discoveries contained meaningful and interesting genes not reported in previous expression profiling studies, such as growth hormone receptor, erythropoietin receptor, tissue factor pathway inhibitor-2, etc. Our findings support the use of meta-analysis for a variety of microarray data beyond the scope of this specific application. |
doi_str_mv | 10.1016/j.febslet.2004.03.081 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71912498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014579304003904</els_id><sourcerecordid>71912498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhJ4B84pYw449sfEJQtbRSJQ6AOFqOM6m88ibBTgr77_FqV-JYTiNL7_N69AxjbxFqBGw-7OqBuhxpqQWAqkHW0OIztsF2KyupmvY52wCgqvTWyAv2KucdlHeL5iW7QI1SgzYb9vNuXOghuSU8Eneji4ccMp8Gvl_jEuZI_IFG4vRnTpRzmEY-p2kIkTJ38xwD9XyZeCx04t6Nvoy8rP3hNXsxuJjpzXlesh8319-vbqv7r1_urj7dV14LqSpsXNc5KbD1UoIYOgmtHoQWwqOQQC0ikG5JNaZx5BR0WwItlCscFEBesven3rLWr5XyYvche4rRjTSt2W7RoFCmfTKIxhgljSxBfQr6NOWcaLBzCnuXDhbBHtXbnT2rt0f1FqQt6gv37vzB2u2p_0edXZfA7Snwu-g7_F-rvbn-LL4d73g8IygAaUCVqo-nKipqHwMlm32gYr8Pifxi-yk8se1f-1Ss7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19994393</pqid></control><display><type>article</type><title>Integrative analysis of multiple gene expression profiles applied to liver cancer study</title><source>Wiley</source><source>Elsevier</source><creator>Kyoon Choi, Jung ; Young Choi, Jong ; Ghon Kim, Dae ; Wook Choi, Dong ; Yeo Kim, Bu ; Ho Lee, Kee ; Il Yeom, Young ; Sook Yoo, Hyang ; Joon Yoo, Ook ; Kim, Sangsoo</creator><creatorcontrib>Kyoon Choi, Jung ; Young Choi, Jong ; Ghon Kim, Dae ; Wook Choi, Dong ; Yeo Kim, Bu ; Ho Lee, Kee ; Il Yeom, Young ; Sook Yoo, Hyang ; Joon Yoo, Ook ; Kim, Sangsoo</creatorcontrib><description>A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification result of our studies and that of published studies, we found that single microarray analysis might lead to false findings. To avoid those pitfalls of single-set analyses, we employed our effect size method to integrate multiple datasets. Of 9982 genes analyzed, 477 significant genes were identified with a false discovery rate of 10%. Gene ontology (GO) terms associated with these genes were explored to validate our method in the biological context with respect to HCC. Furthermore, it was demonstrated that the data integration process increases the sensitivity of analysis and allows small but consistent expression changes to be detected. These integration-driven discoveries contained meaningful and interesting genes not reported in previous expression profiling studies, such as growth hormone receptor, erythropoietin receptor, tissue factor pathway inhibitor-2, etc. Our findings support the use of meta-analysis for a variety of microarray data beyond the scope of this specific application.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/j.febslet.2004.03.081</identifier><identifier>PMID: 15135059</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - metabolism ; Databases as Topic ; FEM, fixed effects model ; Gene Expression Regulation, Neoplastic ; GO, gene ontology ; HBV, hepatitis B virus ; HCC, hepatocellular carcinoma ; Hepatocellular carcinoma ; Humans ; Liver cancer ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Meta-analysis ; Microarray ; Models, Statistical ; Oligonucleotide Array Sequence Analysis - methods ; REM, random effects model ; Statistics as Topic - methods</subject><ispartof>FEBS letters, 2004-05, Vol.565 (1), p.93-100</ispartof><rights>2004</rights><rights>FEBS Letters 565 (2004) 1873-3468 © 2015 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023</citedby><cites>FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014579304003904$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3547,27922,27923,45778</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15135059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyoon Choi, Jung</creatorcontrib><creatorcontrib>Young Choi, Jong</creatorcontrib><creatorcontrib>Ghon Kim, Dae</creatorcontrib><creatorcontrib>Wook Choi, Dong</creatorcontrib><creatorcontrib>Yeo Kim, Bu</creatorcontrib><creatorcontrib>Ho Lee, Kee</creatorcontrib><creatorcontrib>Il Yeom, Young</creatorcontrib><creatorcontrib>Sook Yoo, Hyang</creatorcontrib><creatorcontrib>Joon Yoo, Ook</creatorcontrib><creatorcontrib>Kim, Sangsoo</creatorcontrib><title>Integrative analysis of multiple gene expression profiles applied to liver cancer study</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification result of our studies and that of published studies, we found that single microarray analysis might lead to false findings. To avoid those pitfalls of single-set analyses, we employed our effect size method to integrate multiple datasets. Of 9982 genes analyzed, 477 significant genes were identified with a false discovery rate of 10%. Gene ontology (GO) terms associated with these genes were explored to validate our method in the biological context with respect to HCC. Furthermore, it was demonstrated that the data integration process increases the sensitivity of analysis and allows small but consistent expression changes to be detected. These integration-driven discoveries contained meaningful and interesting genes not reported in previous expression profiling studies, such as growth hormone receptor, erythropoietin receptor, tissue factor pathway inhibitor-2, etc. Our findings support the use of meta-analysis for a variety of microarray data beyond the scope of this specific application.</description><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Databases as Topic</subject><subject>FEM, fixed effects model</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>GO, gene ontology</subject><subject>HBV, hepatitis B virus</subject><subject>HCC, hepatocellular carcinoma</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Meta-analysis</subject><subject>Microarray</subject><subject>Models, Statistical</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>REM, random effects model</subject><subject>Statistics as Topic - methods</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EokvhJ4B84pYw449sfEJQtbRSJQ6AOFqOM6m88ibBTgr77_FqV-JYTiNL7_N69AxjbxFqBGw-7OqBuhxpqQWAqkHW0OIztsF2KyupmvY52wCgqvTWyAv2KucdlHeL5iW7QI1SgzYb9vNuXOghuSU8Eneji4ccMp8Gvl_jEuZI_IFG4vRnTpRzmEY-p2kIkTJ38xwD9XyZeCx04t6Nvoy8rP3hNXsxuJjpzXlesh8319-vbqv7r1_urj7dV14LqSpsXNc5KbD1UoIYOgmtHoQWwqOQQC0ikG5JNaZx5BR0WwItlCscFEBesven3rLWr5XyYvche4rRjTSt2W7RoFCmfTKIxhgljSxBfQr6NOWcaLBzCnuXDhbBHtXbnT2rt0f1FqQt6gv37vzB2u2p_0edXZfA7Snwu-g7_F-rvbn-LL4d73g8IygAaUCVqo-nKipqHwMlm32gYr8Pifxi-yk8se1f-1Ss7Q</recordid><startdate>20040507</startdate><enddate>20040507</enddate><creator>Kyoon Choi, Jung</creator><creator>Young Choi, Jong</creator><creator>Ghon Kim, Dae</creator><creator>Wook Choi, Dong</creator><creator>Yeo Kim, Bu</creator><creator>Ho Lee, Kee</creator><creator>Il Yeom, Young</creator><creator>Sook Yoo, Hyang</creator><creator>Joon Yoo, Ook</creator><creator>Kim, Sangsoo</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040507</creationdate><title>Integrative analysis of multiple gene expression profiles applied to liver cancer study</title><author>Kyoon Choi, Jung ; Young Choi, Jong ; Ghon Kim, Dae ; Wook Choi, Dong ; Yeo Kim, Bu ; Ho Lee, Kee ; Il Yeom, Young ; Sook Yoo, Hyang ; Joon Yoo, Ook ; Kim, Sangsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Databases as Topic</topic><topic>FEM, fixed effects model</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>GO, gene ontology</topic><topic>HBV, hepatitis B virus</topic><topic>HCC, hepatocellular carcinoma</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Meta-analysis</topic><topic>Microarray</topic><topic>Models, Statistical</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>REM, random effects model</topic><topic>Statistics as Topic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyoon Choi, Jung</creatorcontrib><creatorcontrib>Young Choi, Jong</creatorcontrib><creatorcontrib>Ghon Kim, Dae</creatorcontrib><creatorcontrib>Wook Choi, Dong</creatorcontrib><creatorcontrib>Yeo Kim, Bu</creatorcontrib><creatorcontrib>Ho Lee, Kee</creatorcontrib><creatorcontrib>Il Yeom, Young</creatorcontrib><creatorcontrib>Sook Yoo, Hyang</creatorcontrib><creatorcontrib>Joon Yoo, Ook</creatorcontrib><creatorcontrib>Kim, Sangsoo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyoon Choi, Jung</au><au>Young Choi, Jong</au><au>Ghon Kim, Dae</au><au>Wook Choi, Dong</au><au>Yeo Kim, Bu</au><au>Ho Lee, Kee</au><au>Il Yeom, Young</au><au>Sook Yoo, Hyang</au><au>Joon Yoo, Ook</au><au>Kim, Sangsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative analysis of multiple gene expression profiles applied to liver cancer study</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2004-05-07</date><risdate>2004</risdate><volume>565</volume><issue>1</issue><spage>93</spage><epage>100</epage><pages>93-100</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification result of our studies and that of published studies, we found that single microarray analysis might lead to false findings. To avoid those pitfalls of single-set analyses, we employed our effect size method to integrate multiple datasets. Of 9982 genes analyzed, 477 significant genes were identified with a false discovery rate of 10%. Gene ontology (GO) terms associated with these genes were explored to validate our method in the biological context with respect to HCC. Furthermore, it was demonstrated that the data integration process increases the sensitivity of analysis and allows small but consistent expression changes to be detected. These integration-driven discoveries contained meaningful and interesting genes not reported in previous expression profiling studies, such as growth hormone receptor, erythropoietin receptor, tissue factor pathway inhibitor-2, etc. Our findings support the use of meta-analysis for a variety of microarray data beyond the scope of this specific application.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>15135059</pmid><doi>10.1016/j.febslet.2004.03.081</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-5793 |
ispartof | FEBS letters, 2004-05, Vol.565 (1), p.93-100 |
issn | 0014-5793 1873-3468 |
language | eng |
recordid | cdi_proquest_miscellaneous_71912498 |
source | Wiley; Elsevier |
subjects | Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - metabolism Databases as Topic FEM, fixed effects model Gene Expression Regulation, Neoplastic GO, gene ontology HBV, hepatitis B virus HCC, hepatocellular carcinoma Hepatocellular carcinoma Humans Liver cancer Liver Neoplasms - genetics Liver Neoplasms - metabolism Meta-analysis Microarray Models, Statistical Oligonucleotide Array Sequence Analysis - methods REM, random effects model Statistics as Topic - methods |
title | Integrative analysis of multiple gene expression profiles applied to liver cancer study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20analysis%20of%20multiple%20gene%20expression%20profiles%20applied%20to%20liver%20cancer%20study&rft.jtitle=FEBS%20letters&rft.au=Kyoon%20Choi,%20Jung&rft.date=2004-05-07&rft.volume=565&rft.issue=1&rft.spage=93&rft.epage=100&rft.pages=93-100&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1016/j.febslet.2004.03.081&rft_dat=%3Cproquest_cross%3E71912498%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19994393&rft_id=info:pmid/15135059&rfr_iscdi=true |