Loading…

Integrative analysis of multiple gene expression profiles applied to liver cancer study

A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification resu...

Full description

Saved in:
Bibliographic Details
Published in:FEBS letters 2004-05, Vol.565 (1), p.93-100
Main Authors: Kyoon Choi, Jung, Young Choi, Jong, Ghon Kim, Dae, Wook Choi, Dong, Yeo Kim, Bu, Ho Lee, Kee, Il Yeom, Young, Sook Yoo, Hyang, Joon Yoo, Ook, Kim, Sangsoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023
cites cdi_FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023
container_end_page 100
container_issue 1
container_start_page 93
container_title FEBS letters
container_volume 565
creator Kyoon Choi, Jung
Young Choi, Jong
Ghon Kim, Dae
Wook Choi, Dong
Yeo Kim, Bu
Ho Lee, Kee
Il Yeom, Young
Sook Yoo, Hyang
Joon Yoo, Ook
Kim, Sangsoo
description A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification result of our studies and that of published studies, we found that single microarray analysis might lead to false findings. To avoid those pitfalls of single-set analyses, we employed our effect size method to integrate multiple datasets. Of 9982 genes analyzed, 477 significant genes were identified with a false discovery rate of 10%. Gene ontology (GO) terms associated with these genes were explored to validate our method in the biological context with respect to HCC. Furthermore, it was demonstrated that the data integration process increases the sensitivity of analysis and allows small but consistent expression changes to be detected. These integration-driven discoveries contained meaningful and interesting genes not reported in previous expression profiling studies, such as growth hormone receptor, erythropoietin receptor, tissue factor pathway inhibitor-2, etc. Our findings support the use of meta-analysis for a variety of microarray data beyond the scope of this specific application.
doi_str_mv 10.1016/j.febslet.2004.03.081
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71912498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014579304003904</els_id><sourcerecordid>71912498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhJ4B84pYw449sfEJQtbRSJQ6AOFqOM6m88ibBTgr77_FqV-JYTiNL7_N69AxjbxFqBGw-7OqBuhxpqQWAqkHW0OIztsF2KyupmvY52wCgqvTWyAv2KucdlHeL5iW7QI1SgzYb9vNuXOghuSU8Eneji4ccMp8Gvl_jEuZI_IFG4vRnTpRzmEY-p2kIkTJ38xwD9XyZeCx04t6Nvoy8rP3hNXsxuJjpzXlesh8319-vbqv7r1_urj7dV14LqSpsXNc5KbD1UoIYOgmtHoQWwqOQQC0ikG5JNaZx5BR0WwItlCscFEBesven3rLWr5XyYvche4rRjTSt2W7RoFCmfTKIxhgljSxBfQr6NOWcaLBzCnuXDhbBHtXbnT2rt0f1FqQt6gv37vzB2u2p_0edXZfA7Snwu-g7_F-rvbn-LL4d73g8IygAaUCVqo-nKipqHwMlm32gYr8Pifxi-yk8se1f-1Ss7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19994393</pqid></control><display><type>article</type><title>Integrative analysis of multiple gene expression profiles applied to liver cancer study</title><source>Wiley</source><source>Elsevier</source><creator>Kyoon Choi, Jung ; Young Choi, Jong ; Ghon Kim, Dae ; Wook Choi, Dong ; Yeo Kim, Bu ; Ho Lee, Kee ; Il Yeom, Young ; Sook Yoo, Hyang ; Joon Yoo, Ook ; Kim, Sangsoo</creator><creatorcontrib>Kyoon Choi, Jung ; Young Choi, Jong ; Ghon Kim, Dae ; Wook Choi, Dong ; Yeo Kim, Bu ; Ho Lee, Kee ; Il Yeom, Young ; Sook Yoo, Hyang ; Joon Yoo, Ook ; Kim, Sangsoo</creatorcontrib><description>A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification result of our studies and that of published studies, we found that single microarray analysis might lead to false findings. To avoid those pitfalls of single-set analyses, we employed our effect size method to integrate multiple datasets. Of 9982 genes analyzed, 477 significant genes were identified with a false discovery rate of 10%. Gene ontology (GO) terms associated with these genes were explored to validate our method in the biological context with respect to HCC. Furthermore, it was demonstrated that the data integration process increases the sensitivity of analysis and allows small but consistent expression changes to be detected. These integration-driven discoveries contained meaningful and interesting genes not reported in previous expression profiling studies, such as growth hormone receptor, erythropoietin receptor, tissue factor pathway inhibitor-2, etc. Our findings support the use of meta-analysis for a variety of microarray data beyond the scope of this specific application.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/j.febslet.2004.03.081</identifier><identifier>PMID: 15135059</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - metabolism ; Databases as Topic ; FEM, fixed effects model ; Gene Expression Regulation, Neoplastic ; GO, gene ontology ; HBV, hepatitis B virus ; HCC, hepatocellular carcinoma ; Hepatocellular carcinoma ; Humans ; Liver cancer ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Meta-analysis ; Microarray ; Models, Statistical ; Oligonucleotide Array Sequence Analysis - methods ; REM, random effects model ; Statistics as Topic - methods</subject><ispartof>FEBS letters, 2004-05, Vol.565 (1), p.93-100</ispartof><rights>2004</rights><rights>FEBS Letters 565 (2004) 1873-3468 © 2015 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023</citedby><cites>FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014579304003904$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3547,27922,27923,45778</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15135059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyoon Choi, Jung</creatorcontrib><creatorcontrib>Young Choi, Jong</creatorcontrib><creatorcontrib>Ghon Kim, Dae</creatorcontrib><creatorcontrib>Wook Choi, Dong</creatorcontrib><creatorcontrib>Yeo Kim, Bu</creatorcontrib><creatorcontrib>Ho Lee, Kee</creatorcontrib><creatorcontrib>Il Yeom, Young</creatorcontrib><creatorcontrib>Sook Yoo, Hyang</creatorcontrib><creatorcontrib>Joon Yoo, Ook</creatorcontrib><creatorcontrib>Kim, Sangsoo</creatorcontrib><title>Integrative analysis of multiple gene expression profiles applied to liver cancer study</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification result of our studies and that of published studies, we found that single microarray analysis might lead to false findings. To avoid those pitfalls of single-set analyses, we employed our effect size method to integrate multiple datasets. Of 9982 genes analyzed, 477 significant genes were identified with a false discovery rate of 10%. Gene ontology (GO) terms associated with these genes were explored to validate our method in the biological context with respect to HCC. Furthermore, it was demonstrated that the data integration process increases the sensitivity of analysis and allows small but consistent expression changes to be detected. These integration-driven discoveries contained meaningful and interesting genes not reported in previous expression profiling studies, such as growth hormone receptor, erythropoietin receptor, tissue factor pathway inhibitor-2, etc. Our findings support the use of meta-analysis for a variety of microarray data beyond the scope of this specific application.</description><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Databases as Topic</subject><subject>FEM, fixed effects model</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>GO, gene ontology</subject><subject>HBV, hepatitis B virus</subject><subject>HCC, hepatocellular carcinoma</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Meta-analysis</subject><subject>Microarray</subject><subject>Models, Statistical</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>REM, random effects model</subject><subject>Statistics as Topic - methods</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EokvhJ4B84pYw449sfEJQtbRSJQ6AOFqOM6m88ibBTgr77_FqV-JYTiNL7_N69AxjbxFqBGw-7OqBuhxpqQWAqkHW0OIztsF2KyupmvY52wCgqvTWyAv2KucdlHeL5iW7QI1SgzYb9vNuXOghuSU8Eneji4ccMp8Gvl_jEuZI_IFG4vRnTpRzmEY-p2kIkTJ38xwD9XyZeCx04t6Nvoy8rP3hNXsxuJjpzXlesh8319-vbqv7r1_urj7dV14LqSpsXNc5KbD1UoIYOgmtHoQWwqOQQC0ikG5JNaZx5BR0WwItlCscFEBesven3rLWr5XyYvche4rRjTSt2W7RoFCmfTKIxhgljSxBfQr6NOWcaLBzCnuXDhbBHtXbnT2rt0f1FqQt6gv37vzB2u2p_0edXZfA7Snwu-g7_F-rvbn-LL4d73g8IygAaUCVqo-nKipqHwMlm32gYr8Pifxi-yk8se1f-1Ss7Q</recordid><startdate>20040507</startdate><enddate>20040507</enddate><creator>Kyoon Choi, Jung</creator><creator>Young Choi, Jong</creator><creator>Ghon Kim, Dae</creator><creator>Wook Choi, Dong</creator><creator>Yeo Kim, Bu</creator><creator>Ho Lee, Kee</creator><creator>Il Yeom, Young</creator><creator>Sook Yoo, Hyang</creator><creator>Joon Yoo, Ook</creator><creator>Kim, Sangsoo</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040507</creationdate><title>Integrative analysis of multiple gene expression profiles applied to liver cancer study</title><author>Kyoon Choi, Jung ; Young Choi, Jong ; Ghon Kim, Dae ; Wook Choi, Dong ; Yeo Kim, Bu ; Ho Lee, Kee ; Il Yeom, Young ; Sook Yoo, Hyang ; Joon Yoo, Ook ; Kim, Sangsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Databases as Topic</topic><topic>FEM, fixed effects model</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>GO, gene ontology</topic><topic>HBV, hepatitis B virus</topic><topic>HCC, hepatocellular carcinoma</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Meta-analysis</topic><topic>Microarray</topic><topic>Models, Statistical</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>REM, random effects model</topic><topic>Statistics as Topic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyoon Choi, Jung</creatorcontrib><creatorcontrib>Young Choi, Jong</creatorcontrib><creatorcontrib>Ghon Kim, Dae</creatorcontrib><creatorcontrib>Wook Choi, Dong</creatorcontrib><creatorcontrib>Yeo Kim, Bu</creatorcontrib><creatorcontrib>Ho Lee, Kee</creatorcontrib><creatorcontrib>Il Yeom, Young</creatorcontrib><creatorcontrib>Sook Yoo, Hyang</creatorcontrib><creatorcontrib>Joon Yoo, Ook</creatorcontrib><creatorcontrib>Kim, Sangsoo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyoon Choi, Jung</au><au>Young Choi, Jong</au><au>Ghon Kim, Dae</au><au>Wook Choi, Dong</au><au>Yeo Kim, Bu</au><au>Ho Lee, Kee</au><au>Il Yeom, Young</au><au>Sook Yoo, Hyang</au><au>Joon Yoo, Ook</au><au>Kim, Sangsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative analysis of multiple gene expression profiles applied to liver cancer study</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2004-05-07</date><risdate>2004</risdate><volume>565</volume><issue>1</issue><spage>93</spage><epage>100</epage><pages>93-100</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification result of our studies and that of published studies, we found that single microarray analysis might lead to false findings. To avoid those pitfalls of single-set analyses, we employed our effect size method to integrate multiple datasets. Of 9982 genes analyzed, 477 significant genes were identified with a false discovery rate of 10%. Gene ontology (GO) terms associated with these genes were explored to validate our method in the biological context with respect to HCC. Furthermore, it was demonstrated that the data integration process increases the sensitivity of analysis and allows small but consistent expression changes to be detected. These integration-driven discoveries contained meaningful and interesting genes not reported in previous expression profiling studies, such as growth hormone receptor, erythropoietin receptor, tissue factor pathway inhibitor-2, etc. Our findings support the use of meta-analysis for a variety of microarray data beyond the scope of this specific application.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>15135059</pmid><doi>10.1016/j.febslet.2004.03.081</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-5793
ispartof FEBS letters, 2004-05, Vol.565 (1), p.93-100
issn 0014-5793
1873-3468
language eng
recordid cdi_proquest_miscellaneous_71912498
source Wiley; Elsevier
subjects Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - metabolism
Databases as Topic
FEM, fixed effects model
Gene Expression Regulation, Neoplastic
GO, gene ontology
HBV, hepatitis B virus
HCC, hepatocellular carcinoma
Hepatocellular carcinoma
Humans
Liver cancer
Liver Neoplasms - genetics
Liver Neoplasms - metabolism
Meta-analysis
Microarray
Models, Statistical
Oligonucleotide Array Sequence Analysis - methods
REM, random effects model
Statistics as Topic - methods
title Integrative analysis of multiple gene expression profiles applied to liver cancer study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20analysis%20of%20multiple%20gene%20expression%20profiles%20applied%20to%20liver%20cancer%20study&rft.jtitle=FEBS%20letters&rft.au=Kyoon%20Choi,%20Jung&rft.date=2004-05-07&rft.volume=565&rft.issue=1&rft.spage=93&rft.epage=100&rft.pages=93-100&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1016/j.febslet.2004.03.081&rft_dat=%3Cproquest_cross%3E71912498%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5234-16abba3218c3302fb3085f2522c1230e8110e58e4696aea40b7e0524a6ab03023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19994393&rft_id=info:pmid/15135059&rfr_iscdi=true