Loading…
Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus
Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life 1 , 2 , 3 , 4 . In the mammalian hippocampus, a region important for spatial and episodic memory 5 , 6 , thousands of new granule cells are produced per day 7 , with the exact number depending...
Saved in:
Published in: | Nature (London) 2004-05, Vol.429 (6988), p.184-187 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3 |
container_end_page | 187 |
container_issue | 6988 |
container_start_page | 184 |
container_title | Nature (London) |
container_volume | 429 |
creator | Schmidt-Hieber, Christoph Jonas, Peter Bischofberger, Josef |
description | Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life
1
,
2
,
3
,
4
. In the mammalian hippocampus, a region important for spatial and episodic memory
5
,
6
, thousands of new granule cells are produced per day
7
, with the exact number depending on environmental conditions and physical exercise
1
,
8
. The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis
8
,
9
,
10
. Although it has been suggested that newly generated neurons may have specific properties to facilitate learning
2
,
10
,
11
, the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca
2+
channels can generate isolated Ca
2+
spikes and boost fast Na
+
action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories. |
doi_str_mv | 10.1038/nature02553 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71919757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186370771</galeid><sourcerecordid>A186370771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3</originalsourceid><addsrcrecordid>eNqF0s2L1DAYB-AiijuunrxLEBREuybNZ4_DsOrCoqCrHkOapp0sadpNUnT-ezPMgLNQkRxeSJ68-eBXFM8RvEAQi_depTkYWFGKHxQrRDgrCRP8YbGCsBIlFJidFU9ivIUQUsTJ4-IMUQS5YGRV_Lj0W-W1aUHceTUlq8HkVMzVph2wHnjzy-1Ab7wJKmXWB-VnZ4A2zkUwdiBtDVDt7BLY2mkatRqmOT4tHnXKRfPsWM-L7x8ubzafyusvH6826-tSswqnssUNxq3huiLMUE5rzJDQkAjS0K4iNa0qUSPG8rLmolU1VIzWFW0xaWDTdvi8eH3oO4XxbjYxycHG_dWUN-McJUc1qjnl_4WI1xxCXGVYHmCvnJHWd2MKSh_e70ZvOpun10gwzCHnKPuXC15P9k6eoosFlEdrBqsXu765tyGbZH6nXs0xyqtvX-_bt_-265ufm8-LWocxxmA6OQU7qLCTCMp9nuRJnrJ-cfy2uRlM-9ceA5TBqyNQUSvX5XRoG08cz99K9u7dwcW85HsT5O04B5-zsXjuHwd83nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17970032</pqid></control><display><type>article</type><title>Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Schmidt-Hieber, Christoph ; Jonas, Peter ; Bischofberger, Josef</creator><creatorcontrib>Schmidt-Hieber, Christoph ; Jonas, Peter ; Bischofberger, Josef</creatorcontrib><description>Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life
1
,
2
,
3
,
4
. In the mammalian hippocampus, a region important for spatial and episodic memory
5
,
6
, thousands of new granule cells are produced per day
7
, with the exact number depending on environmental conditions and physical exercise
1
,
8
. The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis
8
,
9
,
10
. Although it has been suggested that newly generated neurons may have specific properties to facilitate learning
2
,
10
,
11
, the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca
2+
channels can generate isolated Ca
2+
spikes and boost fast Na
+
action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02553</identifier><identifier>PMID: 15107864</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Action Potentials ; Animals ; Biological and medical sciences ; Calcium - metabolism ; Calcium Channels, T-Type - metabolism ; Cell Differentiation ; Cellular Senescence ; Dendrites - metabolism ; Fundamental and applied biological sciences. Psychology ; Hippocampus - cytology ; Hippocampus - physiology ; Humanities and Social Sciences ; In Vitro Techniques ; letter ; Long-Term Potentiation ; Male ; Memory - physiology ; multidisciplinary ; Neuronal Plasticity ; Rats ; Rats, Wistar ; Science ; Science (multidisciplinary) ; Sodium - metabolism ; Synapses - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Nature (London), 2004-05, Vol.429 (6988), p.184-187</ispartof><rights>Macmillan Magazines Ltd. 2004</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3</citedby><cites>FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15770044$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15107864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt-Hieber, Christoph</creatorcontrib><creatorcontrib>Jonas, Peter</creatorcontrib><creatorcontrib>Bischofberger, Josef</creatorcontrib><title>Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life
1
,
2
,
3
,
4
. In the mammalian hippocampus, a region important for spatial and episodic memory
5
,
6
, thousands of new granule cells are produced per day
7
, with the exact number depending on environmental conditions and physical exercise
1
,
8
. The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis
8
,
9
,
10
. Although it has been suggested that newly generated neurons may have specific properties to facilitate learning
2
,
10
,
11
, the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca
2+
channels can generate isolated Ca
2+
spikes and boost fast Na
+
action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels, T-Type - metabolism</subject><subject>Cell Differentiation</subject><subject>Cellular Senescence</subject><subject>Dendrites - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Humanities and Social Sciences</subject><subject>In Vitro Techniques</subject><subject>letter</subject><subject>Long-Term Potentiation</subject><subject>Male</subject><subject>Memory - physiology</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium - metabolism</subject><subject>Synapses - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqF0s2L1DAYB-AiijuunrxLEBREuybNZ4_DsOrCoqCrHkOapp0sadpNUnT-ezPMgLNQkRxeSJ68-eBXFM8RvEAQi_depTkYWFGKHxQrRDgrCRP8YbGCsBIlFJidFU9ivIUQUsTJ4-IMUQS5YGRV_Lj0W-W1aUHceTUlq8HkVMzVph2wHnjzy-1Ab7wJKmXWB-VnZ4A2zkUwdiBtDVDt7BLY2mkatRqmOT4tHnXKRfPsWM-L7x8ubzafyusvH6826-tSswqnssUNxq3huiLMUE5rzJDQkAjS0K4iNa0qUSPG8rLmolU1VIzWFW0xaWDTdvi8eH3oO4XxbjYxycHG_dWUN-McJUc1qjnl_4WI1xxCXGVYHmCvnJHWd2MKSh_e70ZvOpun10gwzCHnKPuXC15P9k6eoosFlEdrBqsXu765tyGbZH6nXs0xyqtvX-_bt_-265ufm8-LWocxxmA6OQU7qLCTCMp9nuRJnrJ-cfy2uRlM-9ceA5TBqyNQUSvX5XRoG08cz99K9u7dwcW85HsT5O04B5-zsXjuHwd83nQ</recordid><startdate>20040513</startdate><enddate>20040513</enddate><creator>Schmidt-Hieber, Christoph</creator><creator>Jonas, Peter</creator><creator>Bischofberger, Josef</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20040513</creationdate><title>Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus</title><author>Schmidt-Hieber, Christoph ; Jonas, Peter ; Bischofberger, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels, T-Type - metabolism</topic><topic>Cell Differentiation</topic><topic>Cellular Senescence</topic><topic>Dendrites - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Humanities and Social Sciences</topic><topic>In Vitro Techniques</topic><topic>letter</topic><topic>Long-Term Potentiation</topic><topic>Male</topic><topic>Memory - physiology</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium - metabolism</topic><topic>Synapses - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt-Hieber, Christoph</creatorcontrib><creatorcontrib>Jonas, Peter</creatorcontrib><creatorcontrib>Bischofberger, Josef</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt-Hieber, Christoph</au><au>Jonas, Peter</au><au>Bischofberger, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2004-05-13</date><risdate>2004</risdate><volume>429</volume><issue>6988</issue><spage>184</spage><epage>187</epage><pages>184-187</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life
1
,
2
,
3
,
4
. In the mammalian hippocampus, a region important for spatial and episodic memory
5
,
6
, thousands of new granule cells are produced per day
7
, with the exact number depending on environmental conditions and physical exercise
1
,
8
. The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis
8
,
9
,
10
. Although it has been suggested that newly generated neurons may have specific properties to facilitate learning
2
,
10
,
11
, the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca
2+
channels can generate isolated Ca
2+
spikes and boost fast Na
+
action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15107864</pmid><doi>10.1038/nature02553</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2004-05, Vol.429 (6988), p.184-187 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_71919757 |
source | Springer Nature - Connect here FIRST to enable access |
subjects | Action Potentials Animals Biological and medical sciences Calcium - metabolism Calcium Channels, T-Type - metabolism Cell Differentiation Cellular Senescence Dendrites - metabolism Fundamental and applied biological sciences. Psychology Hippocampus - cytology Hippocampus - physiology Humanities and Social Sciences In Vitro Techniques letter Long-Term Potentiation Male Memory - physiology multidisciplinary Neuronal Plasticity Rats Rats, Wistar Science Science (multidisciplinary) Sodium - metabolism Synapses - metabolism Vertebrates: nervous system and sense organs |
title | Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20synaptic%20plasticity%20in%20newly%20generated%20granule%20cells%20of%20the%20adult%20hippocampus&rft.jtitle=Nature%20(London)&rft.au=Schmidt-Hieber,%20Christoph&rft.date=2004-05-13&rft.volume=429&rft.issue=6988&rft.spage=184&rft.epage=187&rft.pages=184-187&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02553&rft_dat=%3Cgale_proqu%3EA186370771%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17970032&rft_id=info:pmid/15107864&rft_galeid=A186370771&rfr_iscdi=true |