Loading…

Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus

Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life 1 , 2 , 3 , 4 . In the mammalian hippocampus, a region important for spatial and episodic memory 5 , 6 , thousands of new granule cells are produced per day 7 , with the exact number depending...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2004-05, Vol.429 (6988), p.184-187
Main Authors: Schmidt-Hieber, Christoph, Jonas, Peter, Bischofberger, Josef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3
cites cdi_FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3
container_end_page 187
container_issue 6988
container_start_page 184
container_title Nature (London)
container_volume 429
creator Schmidt-Hieber, Christoph
Jonas, Peter
Bischofberger, Josef
description Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life 1 , 2 , 3 , 4 . In the mammalian hippocampus, a region important for spatial and episodic memory 5 , 6 , thousands of new granule cells are produced per day 7 , with the exact number depending on environmental conditions and physical exercise 1 , 8 . The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis 8 , 9 , 10 . Although it has been suggested that newly generated neurons may have specific properties to facilitate learning 2 , 10 , 11 , the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca 2+ channels can generate isolated Ca 2+ spikes and boost fast Na + action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.
doi_str_mv 10.1038/nature02553
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71919757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186370771</galeid><sourcerecordid>A186370771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3</originalsourceid><addsrcrecordid>eNqF0s2L1DAYB-AiijuunrxLEBREuybNZ4_DsOrCoqCrHkOapp0sadpNUnT-ezPMgLNQkRxeSJ68-eBXFM8RvEAQi_depTkYWFGKHxQrRDgrCRP8YbGCsBIlFJidFU9ivIUQUsTJ4-IMUQS5YGRV_Lj0W-W1aUHceTUlq8HkVMzVph2wHnjzy-1Ab7wJKmXWB-VnZ4A2zkUwdiBtDVDt7BLY2mkatRqmOT4tHnXKRfPsWM-L7x8ubzafyusvH6826-tSswqnssUNxq3huiLMUE5rzJDQkAjS0K4iNa0qUSPG8rLmolU1VIzWFW0xaWDTdvi8eH3oO4XxbjYxycHG_dWUN-McJUc1qjnl_4WI1xxCXGVYHmCvnJHWd2MKSh_e70ZvOpun10gwzCHnKPuXC15P9k6eoosFlEdrBqsXu765tyGbZH6nXs0xyqtvX-_bt_-265ufm8-LWocxxmA6OQU7qLCTCMp9nuRJnrJ-cfy2uRlM-9ceA5TBqyNQUSvX5XRoG08cz99K9u7dwcW85HsT5O04B5-zsXjuHwd83nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17970032</pqid></control><display><type>article</type><title>Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Schmidt-Hieber, Christoph ; Jonas, Peter ; Bischofberger, Josef</creator><creatorcontrib>Schmidt-Hieber, Christoph ; Jonas, Peter ; Bischofberger, Josef</creatorcontrib><description>Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life 1 , 2 , 3 , 4 . In the mammalian hippocampus, a region important for spatial and episodic memory 5 , 6 , thousands of new granule cells are produced per day 7 , with the exact number depending on environmental conditions and physical exercise 1 , 8 . The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis 8 , 9 , 10 . Although it has been suggested that newly generated neurons may have specific properties to facilitate learning 2 , 10 , 11 , the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca 2+ channels can generate isolated Ca 2+ spikes and boost fast Na + action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02553</identifier><identifier>PMID: 15107864</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Action Potentials ; Animals ; Biological and medical sciences ; Calcium - metabolism ; Calcium Channels, T-Type - metabolism ; Cell Differentiation ; Cellular Senescence ; Dendrites - metabolism ; Fundamental and applied biological sciences. Psychology ; Hippocampus - cytology ; Hippocampus - physiology ; Humanities and Social Sciences ; In Vitro Techniques ; letter ; Long-Term Potentiation ; Male ; Memory - physiology ; multidisciplinary ; Neuronal Plasticity ; Rats ; Rats, Wistar ; Science ; Science (multidisciplinary) ; Sodium - metabolism ; Synapses - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Nature (London), 2004-05, Vol.429 (6988), p.184-187</ispartof><rights>Macmillan Magazines Ltd. 2004</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3</citedby><cites>FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15770044$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15107864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt-Hieber, Christoph</creatorcontrib><creatorcontrib>Jonas, Peter</creatorcontrib><creatorcontrib>Bischofberger, Josef</creatorcontrib><title>Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life 1 , 2 , 3 , 4 . In the mammalian hippocampus, a region important for spatial and episodic memory 5 , 6 , thousands of new granule cells are produced per day 7 , with the exact number depending on environmental conditions and physical exercise 1 , 8 . The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis 8 , 9 , 10 . Although it has been suggested that newly generated neurons may have specific properties to facilitate learning 2 , 10 , 11 , the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca 2+ channels can generate isolated Ca 2+ spikes and boost fast Na + action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels, T-Type - metabolism</subject><subject>Cell Differentiation</subject><subject>Cellular Senescence</subject><subject>Dendrites - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Humanities and Social Sciences</subject><subject>In Vitro Techniques</subject><subject>letter</subject><subject>Long-Term Potentiation</subject><subject>Male</subject><subject>Memory - physiology</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium - metabolism</subject><subject>Synapses - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqF0s2L1DAYB-AiijuunrxLEBREuybNZ4_DsOrCoqCrHkOapp0sadpNUnT-ezPMgLNQkRxeSJ68-eBXFM8RvEAQi_depTkYWFGKHxQrRDgrCRP8YbGCsBIlFJidFU9ivIUQUsTJ4-IMUQS5YGRV_Lj0W-W1aUHceTUlq8HkVMzVph2wHnjzy-1Ab7wJKmXWB-VnZ4A2zkUwdiBtDVDt7BLY2mkatRqmOT4tHnXKRfPsWM-L7x8ubzafyusvH6826-tSswqnssUNxq3huiLMUE5rzJDQkAjS0K4iNa0qUSPG8rLmolU1VIzWFW0xaWDTdvi8eH3oO4XxbjYxycHG_dWUN-McJUc1qjnl_4WI1xxCXGVYHmCvnJHWd2MKSh_e70ZvOpun10gwzCHnKPuXC15P9k6eoosFlEdrBqsXu765tyGbZH6nXs0xyqtvX-_bt_-265ufm8-LWocxxmA6OQU7qLCTCMp9nuRJnrJ-cfy2uRlM-9ceA5TBqyNQUSvX5XRoG08cz99K9u7dwcW85HsT5O04B5-zsXjuHwd83nQ</recordid><startdate>20040513</startdate><enddate>20040513</enddate><creator>Schmidt-Hieber, Christoph</creator><creator>Jonas, Peter</creator><creator>Bischofberger, Josef</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20040513</creationdate><title>Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus</title><author>Schmidt-Hieber, Christoph ; Jonas, Peter ; Bischofberger, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels, T-Type - metabolism</topic><topic>Cell Differentiation</topic><topic>Cellular Senescence</topic><topic>Dendrites - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Humanities and Social Sciences</topic><topic>In Vitro Techniques</topic><topic>letter</topic><topic>Long-Term Potentiation</topic><topic>Male</topic><topic>Memory - physiology</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium - metabolism</topic><topic>Synapses - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt-Hieber, Christoph</creatorcontrib><creatorcontrib>Jonas, Peter</creatorcontrib><creatorcontrib>Bischofberger, Josef</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt-Hieber, Christoph</au><au>Jonas, Peter</au><au>Bischofberger, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2004-05-13</date><risdate>2004</risdate><volume>429</volume><issue>6988</issue><spage>184</spage><epage>187</epage><pages>184-187</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life 1 , 2 , 3 , 4 . In the mammalian hippocampus, a region important for spatial and episodic memory 5 , 6 , thousands of new granule cells are produced per day 7 , with the exact number depending on environmental conditions and physical exercise 1 , 8 . The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis 8 , 9 , 10 . Although it has been suggested that newly generated neurons may have specific properties to facilitate learning 2 , 10 , 11 , the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca 2+ channels can generate isolated Ca 2+ spikes and boost fast Na + action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15107864</pmid><doi>10.1038/nature02553</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2004-05, Vol.429 (6988), p.184-187
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_71919757
source Springer Nature - Connect here FIRST to enable access
subjects Action Potentials
Animals
Biological and medical sciences
Calcium - metabolism
Calcium Channels, T-Type - metabolism
Cell Differentiation
Cellular Senescence
Dendrites - metabolism
Fundamental and applied biological sciences. Psychology
Hippocampus - cytology
Hippocampus - physiology
Humanities and Social Sciences
In Vitro Techniques
letter
Long-Term Potentiation
Male
Memory - physiology
multidisciplinary
Neuronal Plasticity
Rats
Rats, Wistar
Science
Science (multidisciplinary)
Sodium - metabolism
Synapses - metabolism
Vertebrates: nervous system and sense organs
title Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20synaptic%20plasticity%20in%20newly%20generated%20granule%20cells%20of%20the%20adult%20hippocampus&rft.jtitle=Nature%20(London)&rft.au=Schmidt-Hieber,%20Christoph&rft.date=2004-05-13&rft.volume=429&rft.issue=6988&rft.spage=184&rft.epage=187&rft.pages=184-187&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02553&rft_dat=%3Cgale_proqu%3EA186370771%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c623t-d3b33de7c246e57593618c0484b5f24952289166246c78da90a65925d34b0bdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17970032&rft_id=info:pmid/15107864&rft_galeid=A186370771&rfr_iscdi=true