Loading…

Amperometric acetylcholine sensor catalyzed by nickel anode electrode

An amperometric method was using a nickel catalytic electrode in aqueous base solution for detecting acetylcholine (ACh). A sensing mechanism was developed in which ACh was hydrolyzed in base aqueous solution to produce the acetic anion and choline. The alcohol group of choline was oxidized to the c...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2004-07, Vol.20 (1), p.9-14
Main Authors: Lin, Shin, Liu, Chung-Chiun, Chou, Tse-Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An amperometric method was using a nickel catalytic electrode in aqueous base solution for detecting acetylcholine (ACh). A sensing mechanism was developed in which ACh was hydrolyzed in base aqueous solution to produce the acetic anion and choline. The alcohol group of choline was oxidized to the corresponding carboxylic acid by Ni(OH) 2/NiOOH catalytic system. The amperometric response resulted from the current generated by ACh oxidation in response to step changes in ACh concentration. The potential window of limiting current of ACh anodic oxidation at the Ni interface was determined in NaOH electrolyte. The effect of NaOH electrolyte concentration on sensitivity was also discussed. At the optimum operating condition, the method exhibits a good linear relationship between the response current and the ACh concentration. The response time of the ACh sensing system was 10 s. Scanning electrochemical microscopy (SECM) with platinum micro-tips was used to investigate the diffusion layer thickness of Ni electrode.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2004.01.018