Loading…

Spectroscopic investigation on the energy transfer process in photosynthetic apparatus of cyanobacteria

In this work, we employ cyanobacteria, Spirulina platensis, and separate their photosynthetic apparatus, phycobilisome (PBS), thylakoid membrane and phycobilisome–thylakoid membrane complex. The steady state absorption spectra, fluorescence spectra and corresponding deconvoluted spectra and picoseco...

Full description

Saved in:
Bibliographic Details
Published in:Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2004-06, Vol.60 (7), p.1543-1547
Main Authors: Li, Ye, Wang, Bei, Ai, Xi-Cheng, Zhang, Xing-Kang, Zhao, Jing-Quan, Jiang, Li-Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we employ cyanobacteria, Spirulina platensis, and separate their photosynthetic apparatus, phycobilisome (PBS), thylakoid membrane and phycobilisome–thylakoid membrane complex. The steady state absorption spectra, fluorescence spectra and corresponding deconvoluted spectra and picosecond time-resolved spectra are used to investigate the energy transfer process in phycobilisome–thylakoid membrane complex. The results on steady state spectra show chlorophylls of the photosystem II are able to transfer excitation energy to phycobilisome with Chl a molecules selectively excited. The decomposition of the steady state spectra further suggest the uphill energy transfer originate from chlorophylls of photosystem II to cores of phycobilisome, while rods and cores of phycobilisome cannot receive energy from the chlorophylls of photosystem I. The time constant for the back energy transfer process is 18 ps.
ISSN:1386-1425
DOI:10.1016/j.saa.2003.08.017