Loading…
A Single Base Extension Technique for the Analysis of Known Mutations Utilizing Capillary Gel Electrophoreisis with Electrochemical Detection
A novel single nucleotide polymorphism (SNP) detection system is described in which the accuracy of DNA polymerase and advantages of electrochemical detection are demonstrated. A model SNP system is presented to illustrate the potential advantages in coupling the single base extension (SBE) techniqu...
Saved in:
Published in: | Analytical chemistry (Washington) 2002-07, Vol.74 (14), p.3421-3428 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel single nucleotide polymorphism (SNP) detection system is described in which the accuracy of DNA polymerase and advantages of electrochemical detection are demonstrated. A model SNP system is presented to illustrate the potential advantages in coupling the single base extension (SBE) technique to capillary gel electrophoresis (CGE) with electrochemical detection. An electrochemically labeled primer, with a ferrocene acetate covalently attached to its 5‘ end, is used in the extension reaction. When the Watson−Crick complementary ddNTP is added to the SBE reaction, the primer is extended by a single nucleotide. The reaction mixture is subsequently separated by CGE, and the ferrocene-tagged fragments are detected at the separation anode with sinusoidal voltammetry. This work demonstrates the first single base resolution separation of DNA coupled with electrochemical detection. The unextended primer (20-mer) and the 21-mer extension product are separated with a resolution of 0.8. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac025569s |