Loading…

NMDA receptor-mediated depolarizing after-potentials in the basal dendrites of CA1 pyramidal neurons

It was shown recently that the basal dendrites of cortical pyramidal neurons generate NMDA-spikes. In the present study, we made whole-cell recordings from hippocampal CA1 pyramidal neurons and examined whether NMDA receptor activation was involved in synaptic responses. At low input stimulus intens...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience research 2004-03, Vol.48 (3), p.325-333
Main Authors: Enoki, Ryosuke, Kiuchi, Teppei, Koizumi, Amane, Sasaki, Go, Kudo, Yoshihisa, Miyakawa, Hiroyoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It was shown recently that the basal dendrites of cortical pyramidal neurons generate NMDA-spikes. In the present study, we made whole-cell recordings from hippocampal CA1 pyramidal neurons and examined whether NMDA receptor activation was involved in synaptic responses. At low input stimulus intensity, EPSPs with a fast decay time were induced. As the intensity of stimulation was increased in the presence of GABA receptor antagonists, a depolarizing after-potential (DAP) was generated in addition to a fast decaying potential. A DAP was never observed when the input was applied to the apical dendrites. The DAP was suppressed by hyperpolarization or by NMDA receptor antagonists, but not by Na +, K +, or Ca 2+ channel blockers. One possible mechanism is that the morphology of the basal dendrites favors DAP generation. A compartmental model simulation showed that synaptic inputs to thinner shorter dendrites generated a potential that resembled a DAP. Our study shows that a synaptic input to the basal dendrites of a hippocampal pyramidal neuron can generate a NMDA receptor-mediated potential in the presence of GABA receptor blockade.
ISSN:0168-0102
1872-8111
DOI:10.1016/j.neures.2003.11.011