Loading…

A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods

The AM1 semiempirical method is employed to calculate a set of molecular properties (variables) of 45 flavone compounds with antipicornavirus activity, and 9 new flavone molecules are used for an activity prediction study. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Step...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Chemical Information and Computer Sciences 2004-05, Vol.44 (3), p.1153-1161
Main Authors: Souza, Jaime, Molfetta, Fábio A, Honório, Káthia M, Santos, Regina H. A, da Silva, Albérico B. F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163
cites cdi_FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163
container_end_page 1161
container_issue 3
container_start_page 1153
container_title Journal of Chemical Information and Computer Sciences
container_volume 44
creator Souza, Jaime
Molfetta, Fábio A
Honório, Káthia M
Santos, Regina H. A
da Silva, Albérico B. F
description The AM1 semiempirical method is employed to calculate a set of molecular properties (variables) of 45 flavone compounds with antipicornavirus activity, and 9 new flavone molecules are used for an activity prediction study. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Stepwise Discriminant Analysis (SDA), and K-Nearest Neighbor (KNN) are employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying the flavone compounds according to their degree of antipicornavirus activity. The PCA, HCA, SDA, and KNN methods showed that the variables MR (molar refractivity), B9 (bond order between C9 and C10 atoms), and B25 (bond order between C11 and R7 atoms) are important properties for the separation between active and inactive flavone compounds, and this fact reveals that electronic and steric effects are relevant when one is trying to understand the interaction between flavone compounds with antipicornavirus activity and the biological receptor. In the activity prediction study, using the PCA, HCA, SDA, and KNN methodologies, three of the 9 new flavone compounds studied were classified as potentially active against picornaviruses.
doi_str_mv 10.1021/ci030384n
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71958387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>686355881</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163</originalsourceid><addsrcrecordid>eNpl0V1rFDEUBuAgil2rF_4BCYJiL0bzMUkml8tiV3FFpS30LpzJZNzUmWQ7ySwu-OMdnaUFvQpJHs45nBeh55S8pYTRd9YTTnhVhgdoQUWpCy3J9UO0IESLgnFenaAnKd0QwrmW7DE6oWJiqhIL9GuJL_LYHHAMOG8dXobsd97GIcDeD2PCS5v93ucJtPi8g30M0Td4FftdHEOT8Jv50aUzXB_wVfLhO_42Qshjj1db13sLHYbQ_L3E3uXBW_zZ5W1s0lP0qIUuuWfH8xRdnb-_XH0oNl_WH1fLTQFlyXLBaSN1TVWrABxlVmkiCbPQlgIklI0AXZGasJqXjpWuBVrWmlaiBSkkUMlP0eu57m6It6NL2fQ-Wdd1EFwck1FUi4pXaoIv_4E3cZxW0SXDqGSKaEomdDYjO8SUBtea3eB7GA6GEvMnD3OXx2RfHAuOde-ae3kMYALFDHzK7ufdPww_jFRcCXP59cKsxfUnJTfCrCf_avZg0_1w_zf-DTpJoMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216270910</pqid></control><display><type>article</type><title>A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Souza, Jaime ; Molfetta, Fábio A ; Honório, Káthia M ; Santos, Regina H. A ; da Silva, Albérico B. F</creator><creatorcontrib>Souza, Jaime ; Molfetta, Fábio A ; Honório, Káthia M ; Santos, Regina H. A ; da Silva, Albérico B. F</creatorcontrib><description>The AM1 semiempirical method is employed to calculate a set of molecular properties (variables) of 45 flavone compounds with antipicornavirus activity, and 9 new flavone molecules are used for an activity prediction study. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Stepwise Discriminant Analysis (SDA), and K-Nearest Neighbor (KNN) are employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying the flavone compounds according to their degree of antipicornavirus activity. The PCA, HCA, SDA, and KNN methods showed that the variables MR (molar refractivity), B9 (bond order between C9 and C10 atoms), and B25 (bond order between C11 and R7 atoms) are important properties for the separation between active and inactive flavone compounds, and this fact reveals that electronic and steric effects are relevant when one is trying to understand the interaction between flavone compounds with antipicornavirus activity and the biological receptor. In the activity prediction study, using the PCA, HCA, SDA, and KNN methodologies, three of the 9 new flavone compounds studied were classified as potentially active against picornaviruses.</description><identifier>ISSN: 0095-2338</identifier><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci030384n</identifier><identifier>PMID: 15154785</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Chemicals ; Cluster Analysis ; Discriminant Analysis ; Flavones - chemistry ; Flavones - pharmacology ; Molecular Structure ; Picornaviridae - drug effects ; Quantum Theory</subject><ispartof>Journal of Chemical Information and Computer Sciences, 2004-05, Vol.44 (3), p.1153-1161</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>Copyright American Chemical Society May/Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163</citedby><cites>FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15154785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Souza, Jaime</creatorcontrib><creatorcontrib>Molfetta, Fábio A</creatorcontrib><creatorcontrib>Honório, Káthia M</creatorcontrib><creatorcontrib>Santos, Regina H. A</creatorcontrib><creatorcontrib>da Silva, Albérico B. F</creatorcontrib><title>A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods</title><title>Journal of Chemical Information and Computer Sciences</title><addtitle>J. Chem. Inf. Comput. Sci</addtitle><description>The AM1 semiempirical method is employed to calculate a set of molecular properties (variables) of 45 flavone compounds with antipicornavirus activity, and 9 new flavone molecules are used for an activity prediction study. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Stepwise Discriminant Analysis (SDA), and K-Nearest Neighbor (KNN) are employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying the flavone compounds according to their degree of antipicornavirus activity. The PCA, HCA, SDA, and KNN methods showed that the variables MR (molar refractivity), B9 (bond order between C9 and C10 atoms), and B25 (bond order between C11 and R7 atoms) are important properties for the separation between active and inactive flavone compounds, and this fact reveals that electronic and steric effects are relevant when one is trying to understand the interaction between flavone compounds with antipicornavirus activity and the biological receptor. In the activity prediction study, using the PCA, HCA, SDA, and KNN methodologies, three of the 9 new flavone compounds studied were classified as potentially active against picornaviruses.</description><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Chemicals</subject><subject>Cluster Analysis</subject><subject>Discriminant Analysis</subject><subject>Flavones - chemistry</subject><subject>Flavones - pharmacology</subject><subject>Molecular Structure</subject><subject>Picornaviridae - drug effects</subject><subject>Quantum Theory</subject><issn>0095-2338</issn><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpl0V1rFDEUBuAgil2rF_4BCYJiL0bzMUkml8tiV3FFpS30LpzJZNzUmWQ7ySwu-OMdnaUFvQpJHs45nBeh55S8pYTRd9YTTnhVhgdoQUWpCy3J9UO0IESLgnFenaAnKd0QwrmW7DE6oWJiqhIL9GuJL_LYHHAMOG8dXobsd97GIcDeD2PCS5v93ucJtPi8g30M0Td4FftdHEOT8Jv50aUzXB_wVfLhO_42Qshjj1db13sLHYbQ_L3E3uXBW_zZ5W1s0lP0qIUuuWfH8xRdnb-_XH0oNl_WH1fLTQFlyXLBaSN1TVWrABxlVmkiCbPQlgIklI0AXZGasJqXjpWuBVrWmlaiBSkkUMlP0eu57m6It6NL2fQ-Wdd1EFwck1FUi4pXaoIv_4E3cZxW0SXDqGSKaEomdDYjO8SUBtea3eB7GA6GEvMnD3OXx2RfHAuOde-ae3kMYALFDHzK7ufdPww_jFRcCXP59cKsxfUnJTfCrCf_avZg0_1w_zf-DTpJoMo</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Souza, Jaime</creator><creator>Molfetta, Fábio A</creator><creator>Honório, Káthia M</creator><creator>Santos, Regina H. A</creator><creator>da Silva, Albérico B. F</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20040501</creationdate><title>A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods</title><author>Souza, Jaime ; Molfetta, Fábio A ; Honório, Káthia M ; Santos, Regina H. A ; da Silva, Albérico B. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Chemicals</topic><topic>Cluster Analysis</topic><topic>Discriminant Analysis</topic><topic>Flavones - chemistry</topic><topic>Flavones - pharmacology</topic><topic>Molecular Structure</topic><topic>Picornaviridae - drug effects</topic><topic>Quantum Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, Jaime</creatorcontrib><creatorcontrib>Molfetta, Fábio A</creatorcontrib><creatorcontrib>Honório, Káthia M</creatorcontrib><creatorcontrib>Santos, Regina H. A</creatorcontrib><creatorcontrib>da Silva, Albérico B. F</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chemical Information and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Jaime</au><au>Molfetta, Fábio A</au><au>Honório, Káthia M</au><au>Santos, Regina H. A</au><au>da Silva, Albérico B. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods</atitle><jtitle>Journal of Chemical Information and Computer Sciences</jtitle><addtitle>J. Chem. Inf. Comput. Sci</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>44</volume><issue>3</issue><spage>1153</spage><epage>1161</epage><pages>1153-1161</pages><issn>0095-2338</issn><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The AM1 semiempirical method is employed to calculate a set of molecular properties (variables) of 45 flavone compounds with antipicornavirus activity, and 9 new flavone molecules are used for an activity prediction study. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Stepwise Discriminant Analysis (SDA), and K-Nearest Neighbor (KNN) are employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying the flavone compounds according to their degree of antipicornavirus activity. The PCA, HCA, SDA, and KNN methods showed that the variables MR (molar refractivity), B9 (bond order between C9 and C10 atoms), and B25 (bond order between C11 and R7 atoms) are important properties for the separation between active and inactive flavone compounds, and this fact reveals that electronic and steric effects are relevant when one is trying to understand the interaction between flavone compounds with antipicornavirus activity and the biological receptor. In the activity prediction study, using the PCA, HCA, SDA, and KNN methodologies, three of the 9 new flavone compounds studied were classified as potentially active against picornaviruses.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>15154785</pmid><doi>10.1021/ci030384n</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-2338
ispartof Journal of Chemical Information and Computer Sciences, 2004-05, Vol.44 (3), p.1153-1161
issn 0095-2338
1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_71958387
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Chemicals
Cluster Analysis
Discriminant Analysis
Flavones - chemistry
Flavones - pharmacology
Molecular Structure
Picornaviridae - drug effects
Quantum Theory
title A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Study%20on%20the%20Antipicornavirus%20Activity%20of%20Flavonoid%20Compounds%20(Flavones)%20by%20Using%20Quantum%20Chemical%20and%20Chemometric%20Methods&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Computer%20Sciences&rft.au=Souza,%20Jaime&rft.date=2004-05-01&rft.volume=44&rft.issue=3&rft.spage=1153&rft.epage=1161&rft.pages=1153-1161&rft.issn=0095-2338&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci030384n&rft_dat=%3Cproquest_cross%3E686355881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216270910&rft_id=info:pmid/15154785&rfr_iscdi=true