Loading…
A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods
The AM1 semiempirical method is employed to calculate a set of molecular properties (variables) of 45 flavone compounds with antipicornavirus activity, and 9 new flavone molecules are used for an activity prediction study. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Step...
Saved in:
Published in: | Journal of Chemical Information and Computer Sciences 2004-05, Vol.44 (3), p.1153-1161 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163 |
---|---|
cites | cdi_FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163 |
container_end_page | 1161 |
container_issue | 3 |
container_start_page | 1153 |
container_title | Journal of Chemical Information and Computer Sciences |
container_volume | 44 |
creator | Souza, Jaime Molfetta, Fábio A Honório, Káthia M Santos, Regina H. A da Silva, Albérico B. F |
description | The AM1 semiempirical method is employed to calculate a set of molecular properties (variables) of 45 flavone compounds with antipicornavirus activity, and 9 new flavone molecules are used for an activity prediction study. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Stepwise Discriminant Analysis (SDA), and K-Nearest Neighbor (KNN) are employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying the flavone compounds according to their degree of antipicornavirus activity. The PCA, HCA, SDA, and KNN methods showed that the variables MR (molar refractivity), B9 (bond order between C9 and C10 atoms), and B25 (bond order between C11 and R7 atoms) are important properties for the separation between active and inactive flavone compounds, and this fact reveals that electronic and steric effects are relevant when one is trying to understand the interaction between flavone compounds with antipicornavirus activity and the biological receptor. In the activity prediction study, using the PCA, HCA, SDA, and KNN methodologies, three of the 9 new flavone compounds studied were classified as potentially active against picornaviruses. |
doi_str_mv | 10.1021/ci030384n |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71958387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>686355881</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163</originalsourceid><addsrcrecordid>eNpl0V1rFDEUBuAgil2rF_4BCYJiL0bzMUkml8tiV3FFpS30LpzJZNzUmWQ7ySwu-OMdnaUFvQpJHs45nBeh55S8pYTRd9YTTnhVhgdoQUWpCy3J9UO0IESLgnFenaAnKd0QwrmW7DE6oWJiqhIL9GuJL_LYHHAMOG8dXobsd97GIcDeD2PCS5v93ucJtPi8g30M0Td4FftdHEOT8Jv50aUzXB_wVfLhO_42Qshjj1db13sLHYbQ_L3E3uXBW_zZ5W1s0lP0qIUuuWfH8xRdnb-_XH0oNl_WH1fLTQFlyXLBaSN1TVWrABxlVmkiCbPQlgIklI0AXZGasJqXjpWuBVrWmlaiBSkkUMlP0eu57m6It6NL2fQ-Wdd1EFwck1FUi4pXaoIv_4E3cZxW0SXDqGSKaEomdDYjO8SUBtea3eB7GA6GEvMnD3OXx2RfHAuOde-ae3kMYALFDHzK7ufdPww_jFRcCXP59cKsxfUnJTfCrCf_avZg0_1w_zf-DTpJoMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216270910</pqid></control><display><type>article</type><title>A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Souza, Jaime ; Molfetta, Fábio A ; Honório, Káthia M ; Santos, Regina H. A ; da Silva, Albérico B. F</creator><creatorcontrib>Souza, Jaime ; Molfetta, Fábio A ; Honório, Káthia M ; Santos, Regina H. A ; da Silva, Albérico B. F</creatorcontrib><description>The AM1 semiempirical method is employed to calculate a set of molecular properties (variables) of 45 flavone compounds with antipicornavirus activity, and 9 new flavone molecules are used for an activity prediction study. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Stepwise Discriminant Analysis (SDA), and K-Nearest Neighbor (KNN) are employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying the flavone compounds according to their degree of antipicornavirus activity. The PCA, HCA, SDA, and KNN methods showed that the variables MR (molar refractivity), B9 (bond order between C9 and C10 atoms), and B25 (bond order between C11 and R7 atoms) are important properties for the separation between active and inactive flavone compounds, and this fact reveals that electronic and steric effects are relevant when one is trying to understand the interaction between flavone compounds with antipicornavirus activity and the biological receptor. In the activity prediction study, using the PCA, HCA, SDA, and KNN methodologies, three of the 9 new flavone compounds studied were classified as potentially active against picornaviruses.</description><identifier>ISSN: 0095-2338</identifier><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci030384n</identifier><identifier>PMID: 15154785</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Chemicals ; Cluster Analysis ; Discriminant Analysis ; Flavones - chemistry ; Flavones - pharmacology ; Molecular Structure ; Picornaviridae - drug effects ; Quantum Theory</subject><ispartof>Journal of Chemical Information and Computer Sciences, 2004-05, Vol.44 (3), p.1153-1161</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>Copyright American Chemical Society May/Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163</citedby><cites>FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15154785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Souza, Jaime</creatorcontrib><creatorcontrib>Molfetta, Fábio A</creatorcontrib><creatorcontrib>Honório, Káthia M</creatorcontrib><creatorcontrib>Santos, Regina H. A</creatorcontrib><creatorcontrib>da Silva, Albérico B. F</creatorcontrib><title>A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods</title><title>Journal of Chemical Information and Computer Sciences</title><addtitle>J. Chem. Inf. Comput. Sci</addtitle><description>The AM1 semiempirical method is employed to calculate a set of molecular properties (variables) of 45 flavone compounds with antipicornavirus activity, and 9 new flavone molecules are used for an activity prediction study. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Stepwise Discriminant Analysis (SDA), and K-Nearest Neighbor (KNN) are employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying the flavone compounds according to their degree of antipicornavirus activity. The PCA, HCA, SDA, and KNN methods showed that the variables MR (molar refractivity), B9 (bond order between C9 and C10 atoms), and B25 (bond order between C11 and R7 atoms) are important properties for the separation between active and inactive flavone compounds, and this fact reveals that electronic and steric effects are relevant when one is trying to understand the interaction between flavone compounds with antipicornavirus activity and the biological receptor. In the activity prediction study, using the PCA, HCA, SDA, and KNN methodologies, three of the 9 new flavone compounds studied were classified as potentially active against picornaviruses.</description><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Chemicals</subject><subject>Cluster Analysis</subject><subject>Discriminant Analysis</subject><subject>Flavones - chemistry</subject><subject>Flavones - pharmacology</subject><subject>Molecular Structure</subject><subject>Picornaviridae - drug effects</subject><subject>Quantum Theory</subject><issn>0095-2338</issn><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpl0V1rFDEUBuAgil2rF_4BCYJiL0bzMUkml8tiV3FFpS30LpzJZNzUmWQ7ySwu-OMdnaUFvQpJHs45nBeh55S8pYTRd9YTTnhVhgdoQUWpCy3J9UO0IESLgnFenaAnKd0QwrmW7DE6oWJiqhIL9GuJL_LYHHAMOG8dXobsd97GIcDeD2PCS5v93ucJtPi8g30M0Td4FftdHEOT8Jv50aUzXB_wVfLhO_42Qshjj1db13sLHYbQ_L3E3uXBW_zZ5W1s0lP0qIUuuWfH8xRdnb-_XH0oNl_WH1fLTQFlyXLBaSN1TVWrABxlVmkiCbPQlgIklI0AXZGasJqXjpWuBVrWmlaiBSkkUMlP0eu57m6It6NL2fQ-Wdd1EFwck1FUi4pXaoIv_4E3cZxW0SXDqGSKaEomdDYjO8SUBtea3eB7GA6GEvMnD3OXx2RfHAuOde-ae3kMYALFDHzK7ufdPww_jFRcCXP59cKsxfUnJTfCrCf_avZg0_1w_zf-DTpJoMo</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Souza, Jaime</creator><creator>Molfetta, Fábio A</creator><creator>Honório, Káthia M</creator><creator>Santos, Regina H. A</creator><creator>da Silva, Albérico B. F</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20040501</creationdate><title>A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods</title><author>Souza, Jaime ; Molfetta, Fábio A ; Honório, Káthia M ; Santos, Regina H. A ; da Silva, Albérico B. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Chemicals</topic><topic>Cluster Analysis</topic><topic>Discriminant Analysis</topic><topic>Flavones - chemistry</topic><topic>Flavones - pharmacology</topic><topic>Molecular Structure</topic><topic>Picornaviridae - drug effects</topic><topic>Quantum Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, Jaime</creatorcontrib><creatorcontrib>Molfetta, Fábio A</creatorcontrib><creatorcontrib>Honório, Káthia M</creatorcontrib><creatorcontrib>Santos, Regina H. A</creatorcontrib><creatorcontrib>da Silva, Albérico B. F</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chemical Information and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Jaime</au><au>Molfetta, Fábio A</au><au>Honório, Káthia M</au><au>Santos, Regina H. A</au><au>da Silva, Albérico B. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods</atitle><jtitle>Journal of Chemical Information and Computer Sciences</jtitle><addtitle>J. Chem. Inf. Comput. Sci</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>44</volume><issue>3</issue><spage>1153</spage><epage>1161</epage><pages>1153-1161</pages><issn>0095-2338</issn><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The AM1 semiempirical method is employed to calculate a set of molecular properties (variables) of 45 flavone compounds with antipicornavirus activity, and 9 new flavone molecules are used for an activity prediction study. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Stepwise Discriminant Analysis (SDA), and K-Nearest Neighbor (KNN) are employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying the flavone compounds according to their degree of antipicornavirus activity. The PCA, HCA, SDA, and KNN methods showed that the variables MR (molar refractivity), B9 (bond order between C9 and C10 atoms), and B25 (bond order between C11 and R7 atoms) are important properties for the separation between active and inactive flavone compounds, and this fact reveals that electronic and steric effects are relevant when one is trying to understand the interaction between flavone compounds with antipicornavirus activity and the biological receptor. In the activity prediction study, using the PCA, HCA, SDA, and KNN methodologies, three of the 9 new flavone compounds studied were classified as potentially active against picornaviruses.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>15154785</pmid><doi>10.1021/ci030384n</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-2338 |
ispartof | Journal of Chemical Information and Computer Sciences, 2004-05, Vol.44 (3), p.1153-1161 |
issn | 0095-2338 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_71958387 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Antiviral Agents - chemistry Antiviral Agents - pharmacology Chemicals Cluster Analysis Discriminant Analysis Flavones - chemistry Flavones - pharmacology Molecular Structure Picornaviridae - drug effects Quantum Theory |
title | A Study on the Antipicornavirus Activity of Flavonoid Compounds (Flavones) by Using Quantum Chemical and Chemometric Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Study%20on%20the%20Antipicornavirus%20Activity%20of%20Flavonoid%20Compounds%20(Flavones)%20by%20Using%20Quantum%20Chemical%20and%20Chemometric%20Methods&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Computer%20Sciences&rft.au=Souza,%20Jaime&rft.date=2004-05-01&rft.volume=44&rft.issue=3&rft.spage=1153&rft.epage=1161&rft.pages=1153-1161&rft.issn=0095-2338&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci030384n&rft_dat=%3Cproquest_cross%3E686355881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a442t-31d69b17f7aae12c790602caf45a6a4d5a980b02b34e24efa14b9185fa656a163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216270910&rft_id=info:pmid/15154785&rfr_iscdi=true |