Loading…
New nucleosynthesis constraint on the variation of G
Big bang nucleosynthesis can provide, via constraints on the expansion rate at that time, limits on possible variations in Newton's constant, G. The original analyses were performed before an independent measurement of the baryon-to-photon ratio from the cosmic microwave background was availabl...
Saved in:
Published in: | Physical review letters 2004-04, Vol.92 (17), p.171301-171301, Article 171301 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Big bang nucleosynthesis can provide, via constraints on the expansion rate at that time, limits on possible variations in Newton's constant, G. The original analyses were performed before an independent measurement of the baryon-to-photon ratio from the cosmic microwave background was available. Combining this with recent measurements of the primordial deuterium abundance in quasar absorption systems now allows one to derive a new tighter constraint on G without recourse to considerations of helium or lithium abundances. We find that, compared to today's value, G0, G(BBN)/G(0)=1.01(+0.20)(-0.16) at the 68% confidence level. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.92.171301 |