Loading…

Immobilized Particles in Gel Matrix-Type Porous Media. Nonhomogeneous Cell Distribution

The conventional random pore model assumes a homogeneous cell distribution in the gel matrix used to immobilize cells. However, the validity of this model is restricted to values of the exponent α, between 1.8 and 2.25, of a model power function relating the diffusivity coefficient in the matrix wit...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology progress 2002, Vol.18 (4), p.807-814
Main Authors: Mota, Manuel, Teixeira, José A., Yelshin, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4806-27e873c9aea121f2108c8b8873d62ba6dd1111f62344d77a7b51601c456620d3
cites cdi_FETCH-LOGICAL-c4806-27e873c9aea121f2108c8b8873d62ba6dd1111f62344d77a7b51601c456620d3
container_end_page 814
container_issue 4
container_start_page 807
container_title Biotechnology progress
container_volume 18
creator Mota, Manuel
Teixeira, José A.
Yelshin, Alexander
description The conventional random pore model assumes a homogeneous cell distribution in the gel matrix used to immobilize cells. However, the validity of this model is restricted to values of the exponent α, between 1.8 and 2.25, of a model power function relating the diffusivity coefficient in the matrix with the overall cell volume fraction in the system. Based on the analysis of published data for diffusion in gels with immobilized cells and on the homogeneous approach for the random pore model developed in a previous work, a new, nonhomogeneous approach is proposed for αvalues outside the range 1.8–2.25. To explain these data, two main types of nonhomogeneous cell distribution were considered: (1) nonhomogeneous cell distribution in the gel for α > 2.25 (type 1) and (2) nonhomogeneity related with anisotropy of cell space orientation when α < 1.8 (type 2). In the case of nonhomogeneity of type 1, the cell volume fraction in the layers occupied by cells must be considered in place of the concept previously used for homogeneous distribution, viz., the average cell volume fraction. This model underlines that accumulation of cells in a thin layer close to the surface improves their nutrient intake. For nonhomogeneity of type 2, the tortuosity of such a system is smaller than should be expected if spherical cells were considered, thereby changing the effective diffusion. The model proposed in this work proved to fit into several real cases reported in the literature.
doi_str_mv 10.1021/bp020046r
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71983964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71983964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4806-27e873c9aea121f2108c8b8873d62ba6dd1111f62344d77a7b51601c456620d3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhq0KVELaQ_9AtReQOCyM7fXHHiGF8JHQtIrE0fJ6va3L7jq1E0H49RgSwamqL2ONnnfm1TsIfcFwjIHgk2oBBKDg4QMaYEYg50DpDhpIwXguSir30H6MfwBAAicf0R4mmFGK2QDdXXWdr1zrnmydzXRYOtPamLk-G9s2m-plcI_5fL2w2cwHv4rZ1NZOH2e3vv_tO__L9valO7Jtm31zMeHVaul8_wntNrqN9vO2DtH84nw-uswn38dXo9NJborkJSfCSkFNqa1OnhqCQRpZydSrOak0r2ucXsMJLYpaCC0qhjlgUzDOCdR0iA43YxfB_13ZuFSdiyaZ0a--lMClpCUv_gtiWciCYZnAow1ogo8x2EYtgut0WCsM6iVt9ZZ2Yr9uh66qztbv5DbeBBxsAR2Nbpuge-PiO0clxWU61hDBhntwrV3_e6M6m89-vn6TJN9IUuj28U2iw73iggqm7m7Hit3Qs-vpD1AT-gx2D6OZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18484518</pqid></control><display><type>article</type><title>Immobilized Particles in Gel Matrix-Type Porous Media. Nonhomogeneous Cell Distribution</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mota, Manuel ; Teixeira, José A. ; Yelshin, Alexander</creator><creatorcontrib>Mota, Manuel ; Teixeira, José A. ; Yelshin, Alexander</creatorcontrib><description>The conventional random pore model assumes a homogeneous cell distribution in the gel matrix used to immobilize cells. However, the validity of this model is restricted to values of the exponent α, between 1.8 and 2.25, of a model power function relating the diffusivity coefficient in the matrix with the overall cell volume fraction in the system. Based on the analysis of published data for diffusion in gels with immobilized cells and on the homogeneous approach for the random pore model developed in a previous work, a new, nonhomogeneous approach is proposed for αvalues outside the range 1.8–2.25. To explain these data, two main types of nonhomogeneous cell distribution were considered: (1) nonhomogeneous cell distribution in the gel for α &gt; 2.25 (type 1) and (2) nonhomogeneity related with anisotropy of cell space orientation when α &lt; 1.8 (type 2). In the case of nonhomogeneity of type 1, the cell volume fraction in the layers occupied by cells must be considered in place of the concept previously used for homogeneous distribution, viz., the average cell volume fraction. This model underlines that accumulation of cells in a thin layer close to the surface improves their nutrient intake. For nonhomogeneity of type 2, the tortuosity of such a system is smaller than should be expected if spherical cells were considered, thereby changing the effective diffusion. The model proposed in this work proved to fit into several real cases reported in the literature.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp020046r</identifier><identifier>PMID: 12153315</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Anisotropy ; Biological and medical sciences ; Biotechnology ; Cell Count ; Cells, Immobilized - cytology ; Culture Media - chemistry ; Diffusion ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Gels - chemistry ; Immobilization of organelles and whole cells ; Immobilization techniques ; Methods. Procedures. Technologies ; Models, Chemical ; Oxygen - metabolism ; Porosity ; Reproducibility of Results</subject><ispartof>Biotechnology progress, 2002, Vol.18 (4), p.807-814</ispartof><rights>Copyright © 2002 American Institute of Chemical Engineers (AIChE)</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4806-27e873c9aea121f2108c8b8873d62ba6dd1111f62344d77a7b51601c456620d3</citedby><cites>FETCH-LOGICAL-c4806-27e873c9aea121f2108c8b8873d62ba6dd1111f62344d77a7b51601c456620d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27897,27898,27899</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13831960$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12153315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mota, Manuel</creatorcontrib><creatorcontrib>Teixeira, José A.</creatorcontrib><creatorcontrib>Yelshin, Alexander</creatorcontrib><title>Immobilized Particles in Gel Matrix-Type Porous Media. Nonhomogeneous Cell Distribution</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>The conventional random pore model assumes a homogeneous cell distribution in the gel matrix used to immobilize cells. However, the validity of this model is restricted to values of the exponent α, between 1.8 and 2.25, of a model power function relating the diffusivity coefficient in the matrix with the overall cell volume fraction in the system. Based on the analysis of published data for diffusion in gels with immobilized cells and on the homogeneous approach for the random pore model developed in a previous work, a new, nonhomogeneous approach is proposed for αvalues outside the range 1.8–2.25. To explain these data, two main types of nonhomogeneous cell distribution were considered: (1) nonhomogeneous cell distribution in the gel for α &gt; 2.25 (type 1) and (2) nonhomogeneity related with anisotropy of cell space orientation when α &lt; 1.8 (type 2). In the case of nonhomogeneity of type 1, the cell volume fraction in the layers occupied by cells must be considered in place of the concept previously used for homogeneous distribution, viz., the average cell volume fraction. This model underlines that accumulation of cells in a thin layer close to the surface improves their nutrient intake. For nonhomogeneity of type 2, the tortuosity of such a system is smaller than should be expected if spherical cells were considered, thereby changing the effective diffusion. The model proposed in this work proved to fit into several real cases reported in the literature.</description><subject>Anisotropy</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Count</subject><subject>Cells, Immobilized - cytology</subject><subject>Culture Media - chemistry</subject><subject>Diffusion</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels - chemistry</subject><subject>Immobilization of organelles and whole cells</subject><subject>Immobilization techniques</subject><subject>Methods. Procedures. Technologies</subject><subject>Models, Chemical</subject><subject>Oxygen - metabolism</subject><subject>Porosity</subject><subject>Reproducibility of Results</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEQhq0KVELaQ_9AtReQOCyM7fXHHiGF8JHQtIrE0fJ6va3L7jq1E0H49RgSwamqL2ONnnfm1TsIfcFwjIHgk2oBBKDg4QMaYEYg50DpDhpIwXguSir30H6MfwBAAicf0R4mmFGK2QDdXXWdr1zrnmydzXRYOtPamLk-G9s2m-plcI_5fL2w2cwHv4rZ1NZOH2e3vv_tO__L9valO7Jtm31zMeHVaul8_wntNrqN9vO2DtH84nw-uswn38dXo9NJborkJSfCSkFNqa1OnhqCQRpZydSrOak0r2ucXsMJLYpaCC0qhjlgUzDOCdR0iA43YxfB_13ZuFSdiyaZ0a--lMClpCUv_gtiWciCYZnAow1ogo8x2EYtgut0WCsM6iVt9ZZ2Yr9uh66qztbv5DbeBBxsAR2Nbpuge-PiO0clxWU61hDBhntwrV3_e6M6m89-vn6TJN9IUuj28U2iw73iggqm7m7Hit3Qs-vpD1AT-gx2D6OZ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Mota, Manuel</creator><creator>Teixeira, José A.</creator><creator>Yelshin, Alexander</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2002</creationdate><title>Immobilized Particles in Gel Matrix-Type Porous Media. Nonhomogeneous Cell Distribution</title><author>Mota, Manuel ; Teixeira, José A. ; Yelshin, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4806-27e873c9aea121f2108c8b8873d62ba6dd1111f62344d77a7b51601c456620d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anisotropy</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Count</topic><topic>Cells, Immobilized - cytology</topic><topic>Culture Media - chemistry</topic><topic>Diffusion</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels - chemistry</topic><topic>Immobilization of organelles and whole cells</topic><topic>Immobilization techniques</topic><topic>Methods. Procedures. Technologies</topic><topic>Models, Chemical</topic><topic>Oxygen - metabolism</topic><topic>Porosity</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mota, Manuel</creatorcontrib><creatorcontrib>Teixeira, José A.</creatorcontrib><creatorcontrib>Yelshin, Alexander</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mota, Manuel</au><au>Teixeira, José A.</au><au>Yelshin, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilized Particles in Gel Matrix-Type Porous Media. Nonhomogeneous Cell Distribution</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2002</date><risdate>2002</risdate><volume>18</volume><issue>4</issue><spage>807</spage><epage>814</epage><pages>807-814</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>The conventional random pore model assumes a homogeneous cell distribution in the gel matrix used to immobilize cells. However, the validity of this model is restricted to values of the exponent α, between 1.8 and 2.25, of a model power function relating the diffusivity coefficient in the matrix with the overall cell volume fraction in the system. Based on the analysis of published data for diffusion in gels with immobilized cells and on the homogeneous approach for the random pore model developed in a previous work, a new, nonhomogeneous approach is proposed for αvalues outside the range 1.8–2.25. To explain these data, two main types of nonhomogeneous cell distribution were considered: (1) nonhomogeneous cell distribution in the gel for α &gt; 2.25 (type 1) and (2) nonhomogeneity related with anisotropy of cell space orientation when α &lt; 1.8 (type 2). In the case of nonhomogeneity of type 1, the cell volume fraction in the layers occupied by cells must be considered in place of the concept previously used for homogeneous distribution, viz., the average cell volume fraction. This model underlines that accumulation of cells in a thin layer close to the surface improves their nutrient intake. For nonhomogeneity of type 2, the tortuosity of such a system is smaller than should be expected if spherical cells were considered, thereby changing the effective diffusion. The model proposed in this work proved to fit into several real cases reported in the literature.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>12153315</pmid><doi>10.1021/bp020046r</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2002, Vol.18 (4), p.807-814
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_71983964
source Wiley-Blackwell Read & Publish Collection
subjects Anisotropy
Biological and medical sciences
Biotechnology
Cell Count
Cells, Immobilized - cytology
Culture Media - chemistry
Diffusion
Fermentation
Fundamental and applied biological sciences. Psychology
Gels - chemistry
Immobilization of organelles and whole cells
Immobilization techniques
Methods. Procedures. Technologies
Models, Chemical
Oxygen - metabolism
Porosity
Reproducibility of Results
title Immobilized Particles in Gel Matrix-Type Porous Media. Nonhomogeneous Cell Distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T19%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilized%20Particles%20in%20Gel%20Matrix-Type%20Porous%20Media.%20Nonhomogeneous%20Cell%20Distribution&rft.jtitle=Biotechnology%20progress&rft.au=Mota,%20Manuel&rft.date=2002&rft.volume=18&rft.issue=4&rft.spage=807&rft.epage=814&rft.pages=807-814&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp020046r&rft_dat=%3Cproquest_cross%3E71983964%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4806-27e873c9aea121f2108c8b8873d62ba6dd1111f62344d77a7b51601c456620d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18484518&rft_id=info:pmid/12153315&rfr_iscdi=true