Loading…

Arabidopsis SKU6/SPIRAL1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion

The sku6-1 mutant of Arabidopsis thaliana exhibits altered patterns of root and organ growth. sku6 roots, etiolated hypocotyls, and leaf petioles exhibit right-handed axial twisting, and root growth on inclined agar media is strongly right skewed. The touch-dependent sku6 root skewing phenotype is s...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2004-06, Vol.16 (6), p.1506-1520
Main Authors: Sedbrook, J.C, Ehrhardt, D.W, Fisher, S.E, Scheible, W.R, Somerville, C.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sku6-1 mutant of Arabidopsis thaliana exhibits altered patterns of root and organ growth. sku6 roots, etiolated hypocotyls, and leaf petioles exhibit right-handed axial twisting, and root growth on inclined agar media is strongly right skewed. The touch-dependent sku6 root skewing phenotype is suppressed by the antimicrotubule drugs propyzamide and oryzalin, and right skewing is exacerbated by cold treatment. Cloning revealed that sku6-1 is allelic to spiral1-1 (spr1-1). However, modifiers in the Columbia (Col) and Landsberg erecta (Ler) ecotype backgrounds mask noncomplementation in sku6-1 (Col)/spr1-1 (Ler) F1 plants. The SPR1 gene encodes a plant-specific 12-kD protein that is ubiquitously expressed and belongs to a six-member gene family in Arabidopsis. An SPR1:green fluorescent protein (GFP) fusion expressed in transgenic seedlings localized to microtubules within the cortical array, preprophase band, phragmoplast, and mitotic spindle. SPR1:GFP was concentrated at the growing ends of cortical microtubules and was dependent on polymer growth state; the microtubule-related fluorescence dissipated upon polymer shortening. The protein has a repeated motif at both ends, separated by a predicted rod-like domain, suggesting that it may act as an intermolecular linker. These observations suggest that SPR1 is involved in microtubule polymerization dynamics and/or guidance, which in turn influences touch-induced directional cell expansion and axial twisting.
ISSN:1040-4651
1532-298X
1532-298X
DOI:10.1105/tpc.020644