Loading…

Identification of C. elegans sensory ray genes using whole-genome expression profiling

The three cells that comprise each C. elegans sensory ray (two sensory neurons and a structural cell) descend from a single neuroblast precursor cell. The atonal ortholog lin-32 and the E/ daughterless ortholog hlh-2 act to confer neural competence during ray development, but additional regulatory f...

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 2004-06, Vol.270 (2), p.499-512
Main Authors: Portman, Douglas S, Emmons, Scott W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-4afc18cb7712e9b85288a7e9918a7eb8e27d564800252fc80715b14d77839b593
cites cdi_FETCH-LOGICAL-c452t-4afc18cb7712e9b85288a7e9918a7eb8e27d564800252fc80715b14d77839b593
container_end_page 512
container_issue 2
container_start_page 499
container_title Developmental biology
container_volume 270
creator Portman, Douglas S
Emmons, Scott W
description The three cells that comprise each C. elegans sensory ray (two sensory neurons and a structural cell) descend from a single neuroblast precursor cell. The atonal ortholog lin-32 and the E/ daughterless ortholog hlh-2 act to confer neural competence during ray development, but additional regulatory factors that control specific aspects of cell fate are largely unknown. Here, we use full-genome DNA microarrays to compare gene expression profiles in adult males of two mutant strains to identify new components of the regulatory network that controls ray development and function. This approach identified a large set of candidate ray genes. Using reporter genes, we confirmed ray expression for 13 of these, including a β-tubulin, a TWK-family channel, a putative chemoreceptor and four novel genes (the cwp genes) with a potential role in sensory signaling through the C. elegans polycystins lov-1 and pkd-2. Additionally, we have found several ray-expressed transcription factors, including the Zn-finger factor egl-46 and the bHLH gene hlh-10. The expression of many of these genes requires lin-32 function, though this requirement may not reflect direct activation by lin-32. Our strategy provides a complementary foundation for modeling the genetic network that controls the development of a simple sensory organ.
doi_str_mv 10.1016/j.ydbio.2004.02.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71993314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001216060400140X</els_id><sourcerecordid>71993314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4afc18cb7712e9b85288a7e9918a7eb8e27d564800252fc80715b14d77839b593</originalsourceid><addsrcrecordid>eNqFkMFqGzEQhkVJqR2nTxAIOuW22xntriUdcggmbQyGXtqSm9jVzroy65UjrdP47SvHhtxaGBgYvn-G-Ri7RsgRcP5lkx_axvlcAJQ5iFTwgU0RdJVV8_Lpgk0BUGQ4h_mEXca4AYBCqeITm2CFqpBCT9mvZUvD6Dpn69H5gfuOL3JOPa3rIfJIQ_ThwEN94GsaKPJ9dMOa__nte8rSxG-J0-suUIzH9C74zvWJuGIfu7qP9PncZ-zn14cfi8ds9f3bcnG_ymxZiTEr686iso2UKEg3qhJK1ZK0xmNrFAnZpl8UgKhEZxVIrBosWylVoZtKFzN2e9qbLj_vKY5m66Klvq8H8vtoJGpdFFj-F0SplZZKJrA4gTb4GAN1Zhfctg4Hg2CO3s3GvHk3R-8GRCpIqZvz-n2zpfY9cxadgLsTQMnGi6NgonU0WGpdIDua1rt_HvgLDkqUvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17989787</pqid></control><display><type>article</type><title>Identification of C. elegans sensory ray genes using whole-genome expression profiling</title><source>ScienceDirect Freedom Collection</source><creator>Portman, Douglas S ; Emmons, Scott W</creator><creatorcontrib>Portman, Douglas S ; Emmons, Scott W</creatorcontrib><description>The three cells that comprise each C. elegans sensory ray (two sensory neurons and a structural cell) descend from a single neuroblast precursor cell. The atonal ortholog lin-32 and the E/ daughterless ortholog hlh-2 act to confer neural competence during ray development, but additional regulatory factors that control specific aspects of cell fate are largely unknown. Here, we use full-genome DNA microarrays to compare gene expression profiles in adult males of two mutant strains to identify new components of the regulatory network that controls ray development and function. This approach identified a large set of candidate ray genes. Using reporter genes, we confirmed ray expression for 13 of these, including a β-tubulin, a TWK-family channel, a putative chemoreceptor and four novel genes (the cwp genes) with a potential role in sensory signaling through the C. elegans polycystins lov-1 and pkd-2. Additionally, we have found several ray-expressed transcription factors, including the Zn-finger factor egl-46 and the bHLH gene hlh-10. The expression of many of these genes requires lin-32 function, though this requirement may not reflect direct activation by lin-32. Our strategy provides a complementary foundation for modeling the genetic network that controls the development of a simple sensory organ.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2004.02.020</identifier><identifier>PMID: 15183729</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; C. elegans ; Caenorhabditis elegans ; Caenorhabditis elegans - embryology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Differentiation - physiology ; Databases, Genetic ; DNA microarrays ; E-Box Elements - genetics ; Gene Expression Profiling ; Genes, Reporter - genetics ; Genetic network ; lin-32 ; Male ; Male tail ; Neural subtype ; Oligonucleotide Array Sequence Analysis ; Polycystins ; Proneural ; Sensory rays ; Sensory Receptor Cells - cytology ; Sensory Receptor Cells - embryology ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Developmental biology, 2004-06, Vol.270 (2), p.499-512</ispartof><rights>2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4afc18cb7712e9b85288a7e9918a7eb8e27d564800252fc80715b14d77839b593</citedby><cites>FETCH-LOGICAL-c452t-4afc18cb7712e9b85288a7e9918a7eb8e27d564800252fc80715b14d77839b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15183729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Portman, Douglas S</creatorcontrib><creatorcontrib>Emmons, Scott W</creatorcontrib><title>Identification of C. elegans sensory ray genes using whole-genome expression profiling</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>The three cells that comprise each C. elegans sensory ray (two sensory neurons and a structural cell) descend from a single neuroblast precursor cell. The atonal ortholog lin-32 and the E/ daughterless ortholog hlh-2 act to confer neural competence during ray development, but additional regulatory factors that control specific aspects of cell fate are largely unknown. Here, we use full-genome DNA microarrays to compare gene expression profiles in adult males of two mutant strains to identify new components of the regulatory network that controls ray development and function. This approach identified a large set of candidate ray genes. Using reporter genes, we confirmed ray expression for 13 of these, including a β-tubulin, a TWK-family channel, a putative chemoreceptor and four novel genes (the cwp genes) with a potential role in sensory signaling through the C. elegans polycystins lov-1 and pkd-2. Additionally, we have found several ray-expressed transcription factors, including the Zn-finger factor egl-46 and the bHLH gene hlh-10. The expression of many of these genes requires lin-32 function, though this requirement may not reflect direct activation by lin-32. Our strategy provides a complementary foundation for modeling the genetic network that controls the development of a simple sensory organ.</description><subject>Animals</subject><subject>C. elegans</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - embryology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Databases, Genetic</subject><subject>DNA microarrays</subject><subject>E-Box Elements - genetics</subject><subject>Gene Expression Profiling</subject><subject>Genes, Reporter - genetics</subject><subject>Genetic network</subject><subject>lin-32</subject><subject>Male</subject><subject>Male tail</subject><subject>Neural subtype</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Polycystins</subject><subject>Proneural</subject><subject>Sensory rays</subject><subject>Sensory Receptor Cells - cytology</subject><subject>Sensory Receptor Cells - embryology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkMFqGzEQhkVJqR2nTxAIOuW22xntriUdcggmbQyGXtqSm9jVzroy65UjrdP47SvHhtxaGBgYvn-G-Ri7RsgRcP5lkx_axvlcAJQ5iFTwgU0RdJVV8_Lpgk0BUGQ4h_mEXca4AYBCqeITm2CFqpBCT9mvZUvD6Dpn69H5gfuOL3JOPa3rIfJIQ_ThwEN94GsaKPJ9dMOa__nte8rSxG-J0-suUIzH9C74zvWJuGIfu7qP9PncZ-zn14cfi8ds9f3bcnG_ymxZiTEr686iso2UKEg3qhJK1ZK0xmNrFAnZpl8UgKhEZxVIrBosWylVoZtKFzN2e9qbLj_vKY5m66Klvq8H8vtoJGpdFFj-F0SplZZKJrA4gTb4GAN1Zhfctg4Hg2CO3s3GvHk3R-8GRCpIqZvz-n2zpfY9cxadgLsTQMnGi6NgonU0WGpdIDua1rt_HvgLDkqUvw</recordid><startdate>20040615</startdate><enddate>20040615</enddate><creator>Portman, Douglas S</creator><creator>Emmons, Scott W</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040615</creationdate><title>Identification of C. elegans sensory ray genes using whole-genome expression profiling</title><author>Portman, Douglas S ; Emmons, Scott W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4afc18cb7712e9b85288a7e9918a7eb8e27d564800252fc80715b14d77839b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>C. elegans</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - embryology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Databases, Genetic</topic><topic>DNA microarrays</topic><topic>E-Box Elements - genetics</topic><topic>Gene Expression Profiling</topic><topic>Genes, Reporter - genetics</topic><topic>Genetic network</topic><topic>lin-32</topic><topic>Male</topic><topic>Male tail</topic><topic>Neural subtype</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Polycystins</topic><topic>Proneural</topic><topic>Sensory rays</topic><topic>Sensory Receptor Cells - cytology</topic><topic>Sensory Receptor Cells - embryology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Portman, Douglas S</creatorcontrib><creatorcontrib>Emmons, Scott W</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Portman, Douglas S</au><au>Emmons, Scott W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of C. elegans sensory ray genes using whole-genome expression profiling</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2004-06-15</date><risdate>2004</risdate><volume>270</volume><issue>2</issue><spage>499</spage><epage>512</epage><pages>499-512</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>The three cells that comprise each C. elegans sensory ray (two sensory neurons and a structural cell) descend from a single neuroblast precursor cell. The atonal ortholog lin-32 and the E/ daughterless ortholog hlh-2 act to confer neural competence during ray development, but additional regulatory factors that control specific aspects of cell fate are largely unknown. Here, we use full-genome DNA microarrays to compare gene expression profiles in adult males of two mutant strains to identify new components of the regulatory network that controls ray development and function. This approach identified a large set of candidate ray genes. Using reporter genes, we confirmed ray expression for 13 of these, including a β-tubulin, a TWK-family channel, a putative chemoreceptor and four novel genes (the cwp genes) with a potential role in sensory signaling through the C. elegans polycystins lov-1 and pkd-2. Additionally, we have found several ray-expressed transcription factors, including the Zn-finger factor egl-46 and the bHLH gene hlh-10. The expression of many of these genes requires lin-32 function, though this requirement may not reflect direct activation by lin-32. Our strategy provides a complementary foundation for modeling the genetic network that controls the development of a simple sensory organ.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15183729</pmid><doi>10.1016/j.ydbio.2004.02.020</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2004-06, Vol.270 (2), p.499-512
issn 0012-1606
1095-564X
language eng
recordid cdi_proquest_miscellaneous_71993314
source ScienceDirect Freedom Collection
subjects Animals
C. elegans
Caenorhabditis elegans
Caenorhabditis elegans - embryology
Caenorhabditis elegans - genetics
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Cell Differentiation - physiology
Databases, Genetic
DNA microarrays
E-Box Elements - genetics
Gene Expression Profiling
Genes, Reporter - genetics
Genetic network
lin-32
Male
Male tail
Neural subtype
Oligonucleotide Array Sequence Analysis
Polycystins
Proneural
Sensory rays
Sensory Receptor Cells - cytology
Sensory Receptor Cells - embryology
Transcription Factors - genetics
Transcription Factors - metabolism
title Identification of C. elegans sensory ray genes using whole-genome expression profiling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20C.%20elegans%20sensory%20ray%20genes%20using%20whole-genome%20expression%20profiling&rft.jtitle=Developmental%20biology&rft.au=Portman,%20Douglas%20S&rft.date=2004-06-15&rft.volume=270&rft.issue=2&rft.spage=499&rft.epage=512&rft.pages=499-512&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2004.02.020&rft_dat=%3Cproquest_cross%3E71993314%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-4afc18cb7712e9b85288a7e9918a7eb8e27d564800252fc80715b14d77839b593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17989787&rft_id=info:pmid/15183729&rfr_iscdi=true