Loading…

F-actin-dependent Insolubility of Chromatin-modifying Components

Many complexes involved in chromatin modification are difficult to isolate and commonly found associated with nuclear matrix preparations. In this study, we examine the elution properties of chromatin-modifying components under different extraction conditions. We find that most, but not all, histone...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-06, Vol.279 (24), p.25017-25023
Main Authors: Andrin, Christi, Hendzel, Michael J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many complexes involved in chromatin modification are difficult to isolate and commonly found associated with nuclear matrix preparations. In this study, we examine the elution properties of chromatin-modifying components under different extraction conditions. We find that most, but not all, histone acetyltransferases and histone deacetylases predominantly partition with the nuclear pellet during intermediate salt extraction. In attempts to identify a biological basis for the observed insolubility, we demonstrate that depolymerizing cellular actin, but not cellular tubulin, mobilizes a significant proportion of the insoluble pool into the intermediate salt-soluble nuclear extract. The disruption of cellular F-actin releases a specific subset of high molecular weight, active, nuclear histone deacetylase complexes that are not found under normal conditions. This study demonstrates that actin polymerization, a physiologically relevant process, is responsible for the observed insolubility of these components during nuclear extract preparation and establishes a simple strategy for isolating subsets of chromatin-modifying complexes that are otherwise depleted or absent under the same extraction conditions.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M401805200