Loading…
Biplots for Multifactorial Analysis of Distance
Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure, but do not accord with MANOVA assumptions for their analysis. One way forward is to calculate the matrix of dissimilarities or distances between every pair of individuals, and then to conduct an analysis of distan...
Saved in:
Published in: | Biometrics 2004-06, Vol.60 (2), p.517-524 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3 |
container_end_page | 524 |
container_issue | 2 |
container_start_page | 517 |
container_title | Biometrics |
container_volume | 60 |
creator | Krzanowski, W. J. |
description | Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure, but do not accord with MANOVA assumptions for their analysis. One way forward is to calculate the matrix of dissimilarities or distances between every pair of individuals, and then to conduct an analysis of distance on the resulting data. Various metric scaling plots can be used to interpret the results of the analysis. However, developments to date of this approach have focused mainly on the individuals in the sample, and little attention has been paid to the assessment of influence of the original variables on the results. The present article attempts to rectify this omission. We discuss the inclusion of biplots on all forms of metric scaling representations in the analysis of distance. Exact biplots will often be nonlinear so we propose a simple linear approximation, and contrast it with other simple linear possibilities. An example from ecology illustrates the methodology. |
doi_str_mv | 10.1111/j.0006-341X.2004.00198.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72006173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695781</jstor_id><sourcerecordid>3695781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3</originalsourceid><addsrcrecordid>eNqNkU9vEzEQxS1ERUPhGyBYceC26XjX__bAoQ00VGqp1FLR28i7sZGXTZzauyL59jjdKJU44Ys9mt97Hj8TklGY0rRO2ykAiLxk9GFaALBU0kpNNy_IhHJGc2AFvCSTA3RMXsfYprLiULwix5RTBUJWE3J67tad72Nmfciuh653Vje9D0532dlKd9voYuZt9sXFXq8a84YcWd1F83a_n5D7i68_Zt_yq5v55ezsKm-Y5CqXQhpe16KwdfKzGhQvasbBAJeS64Vd0EKWHEQJDS0YWzDLQDbSgLJC8Lo8IZ9G33Xwj4OJPS5dbEzX6ZXxQ0SZni2oLBP48R-w9UNIk0dUSlHGS0UTpEaoCT7GYCyug1vqsEUKuEsUW9yFhbuwcJcoPiWKmyR9v_cf6qVZPAv3ESbg8wj8cZ3Z_rcxnl_eXKdT0r8b9W1MuR_0pai4fBo9H9vpA8zm0NbhNwpZSo4_v8_x4eIW5kJVOEv8h5G32qP-FVzE-7sCKE_3MpVMy7-3_KPx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888145381</pqid></control><display><type>article</type><title>Biplots for Multifactorial Analysis of Distance</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><source>SPORTDiscus with Full Text</source><creator>Krzanowski, W. J.</creator><creatorcontrib>Krzanowski, W. J.</creatorcontrib><description>Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure, but do not accord with MANOVA assumptions for their analysis. One way forward is to calculate the matrix of dissimilarities or distances between every pair of individuals, and then to conduct an analysis of distance on the resulting data. Various metric scaling plots can be used to interpret the results of the analysis. However, developments to date of this approach have focused mainly on the individuals in the sample, and little attention has been paid to the assessment of influence of the original variables on the results. The present article attempts to rectify this omission. We discuss the inclusion of biplots on all forms of metric scaling representations in the analysis of distance. Exact biplots will often be nonlinear so we propose a simple linear approximation, and contrast it with other simple linear possibilities. An example from ecology illustrates the methodology.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.0006-341X.2004.00198.x</identifier><identifier>PMID: 15180679</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K: Blackwell Publishing</publisher><subject>Analysis of variance ; Biometrics ; Biometry ; Coordinate systems ; data collection ; Data Interpretation, Statistical ; Ecology ; Ecology - statistics & numerical data ; Eigenvalues ; factor analysis ; Factorial experiments ; Factorials ; Linear Models ; MANOVA ; Marine Biology - statistics & numerical data ; Marine ecology ; Mathematical vectors ; Matrices ; Models, Statistical ; Multivariate Analysis ; Ordination ; Principal components analysis ; Principal coordinate analysis ; Sums of squares</subject><ispartof>Biometrics, 2004-06, Vol.60 (2), p.517-524</ispartof><rights>Copyright 2004 The International Biometric Society</rights><rights>Copyright Blackwell Publishing Ltd. Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3</citedby><cites>FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695781$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695781$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15180679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krzanowski, W. J.</creatorcontrib><title>Biplots for Multifactorial Analysis of Distance</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure, but do not accord with MANOVA assumptions for their analysis. One way forward is to calculate the matrix of dissimilarities or distances between every pair of individuals, and then to conduct an analysis of distance on the resulting data. Various metric scaling plots can be used to interpret the results of the analysis. However, developments to date of this approach have focused mainly on the individuals in the sample, and little attention has been paid to the assessment of influence of the original variables on the results. The present article attempts to rectify this omission. We discuss the inclusion of biplots on all forms of metric scaling representations in the analysis of distance. Exact biplots will often be nonlinear so we propose a simple linear approximation, and contrast it with other simple linear possibilities. An example from ecology illustrates the methodology.</description><subject>Analysis of variance</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Coordinate systems</subject><subject>data collection</subject><subject>Data Interpretation, Statistical</subject><subject>Ecology</subject><subject>Ecology - statistics & numerical data</subject><subject>Eigenvalues</subject><subject>factor analysis</subject><subject>Factorial experiments</subject><subject>Factorials</subject><subject>Linear Models</subject><subject>MANOVA</subject><subject>Marine Biology - statistics & numerical data</subject><subject>Marine ecology</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Models, Statistical</subject><subject>Multivariate Analysis</subject><subject>Ordination</subject><subject>Principal components analysis</subject><subject>Principal coordinate analysis</subject><subject>Sums of squares</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkU9vEzEQxS1ERUPhGyBYceC26XjX__bAoQ00VGqp1FLR28i7sZGXTZzauyL59jjdKJU44Ys9mt97Hj8TklGY0rRO2ykAiLxk9GFaALBU0kpNNy_IhHJGc2AFvCSTA3RMXsfYprLiULwix5RTBUJWE3J67tad72Nmfciuh653Vje9D0532dlKd9voYuZt9sXFXq8a84YcWd1F83a_n5D7i68_Zt_yq5v55ezsKm-Y5CqXQhpe16KwdfKzGhQvasbBAJeS64Vd0EKWHEQJDS0YWzDLQDbSgLJC8Lo8IZ9G33Xwj4OJPS5dbEzX6ZXxQ0SZni2oLBP48R-w9UNIk0dUSlHGS0UTpEaoCT7GYCyug1vqsEUKuEsUW9yFhbuwcJcoPiWKmyR9v_cf6qVZPAv3ESbg8wj8cZ3Z_rcxnl_eXKdT0r8b9W1MuR_0pai4fBo9H9vpA8zm0NbhNwpZSo4_v8_x4eIW5kJVOEv8h5G32qP-FVzE-7sCKE_3MpVMy7-3_KPx</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Krzanowski, W. J.</creator><general>Blackwell Publishing</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200406</creationdate><title>Biplots for Multifactorial Analysis of Distance</title><author>Krzanowski, W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis of variance</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Coordinate systems</topic><topic>data collection</topic><topic>Data Interpretation, Statistical</topic><topic>Ecology</topic><topic>Ecology - statistics & numerical data</topic><topic>Eigenvalues</topic><topic>factor analysis</topic><topic>Factorial experiments</topic><topic>Factorials</topic><topic>Linear Models</topic><topic>MANOVA</topic><topic>Marine Biology - statistics & numerical data</topic><topic>Marine ecology</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Models, Statistical</topic><topic>Multivariate Analysis</topic><topic>Ordination</topic><topic>Principal components analysis</topic><topic>Principal coordinate analysis</topic><topic>Sums of squares</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krzanowski, W. J.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzanowski, W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biplots for Multifactorial Analysis of Distance</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2004-06</date><risdate>2004</risdate><volume>60</volume><issue>2</issue><spage>517</spage><epage>524</epage><pages>517-524</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure, but do not accord with MANOVA assumptions for their analysis. One way forward is to calculate the matrix of dissimilarities or distances between every pair of individuals, and then to conduct an analysis of distance on the resulting data. Various metric scaling plots can be used to interpret the results of the analysis. However, developments to date of this approach have focused mainly on the individuals in the sample, and little attention has been paid to the assessment of influence of the original variables on the results. The present article attempts to rectify this omission. We discuss the inclusion of biplots on all forms of metric scaling representations in the analysis of distance. Exact biplots will often be nonlinear so we propose a simple linear approximation, and contrast it with other simple linear possibilities. An example from ecology illustrates the methodology.</abstract><cop>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K</cop><pub>Blackwell Publishing</pub><pmid>15180679</pmid><doi>10.1111/j.0006-341X.2004.00198.x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2004-06, Vol.60 (2), p.517-524 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_72006173 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online; SPORTDiscus with Full Text |
subjects | Analysis of variance Biometrics Biometry Coordinate systems data collection Data Interpretation, Statistical Ecology Ecology - statistics & numerical data Eigenvalues factor analysis Factorial experiments Factorials Linear Models MANOVA Marine Biology - statistics & numerical data Marine ecology Mathematical vectors Matrices Models, Statistical Multivariate Analysis Ordination Principal components analysis Principal coordinate analysis Sums of squares |
title | Biplots for Multifactorial Analysis of Distance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biplots%20for%20Multifactorial%20Analysis%20of%20Distance&rft.jtitle=Biometrics&rft.au=Krzanowski,%20W.%20J.&rft.date=2004-06&rft.volume=60&rft.issue=2&rft.spage=517&rft.epage=524&rft.pages=517-524&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.0006-341X.2004.00198.x&rft_dat=%3Cjstor_proqu%3E3695781%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=888145381&rft_id=info:pmid/15180679&rft_jstor_id=3695781&rfr_iscdi=true |