Loading…

Biplots for Multifactorial Analysis of Distance

Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure, but do not accord with MANOVA assumptions for their analysis. One way forward is to calculate the matrix of dissimilarities or distances between every pair of individuals, and then to conduct an analysis of distan...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2004-06, Vol.60 (2), p.517-524
Main Author: Krzanowski, W. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3
cites cdi_FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3
container_end_page 524
container_issue 2
container_start_page 517
container_title Biometrics
container_volume 60
creator Krzanowski, W. J.
description Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure, but do not accord with MANOVA assumptions for their analysis. One way forward is to calculate the matrix of dissimilarities or distances between every pair of individuals, and then to conduct an analysis of distance on the resulting data. Various metric scaling plots can be used to interpret the results of the analysis. However, developments to date of this approach have focused mainly on the individuals in the sample, and little attention has been paid to the assessment of influence of the original variables on the results. The present article attempts to rectify this omission. We discuss the inclusion of biplots on all forms of metric scaling representations in the analysis of distance. Exact biplots will often be nonlinear so we propose a simple linear approximation, and contrast it with other simple linear possibilities. An example from ecology illustrates the methodology.
doi_str_mv 10.1111/j.0006-341X.2004.00198.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72006173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695781</jstor_id><sourcerecordid>3695781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3</originalsourceid><addsrcrecordid>eNqNkU9vEzEQxS1ERUPhGyBYceC26XjX__bAoQ00VGqp1FLR28i7sZGXTZzauyL59jjdKJU44Ys9mt97Hj8TklGY0rRO2ykAiLxk9GFaALBU0kpNNy_IhHJGc2AFvCSTA3RMXsfYprLiULwix5RTBUJWE3J67tad72Nmfciuh653Vje9D0532dlKd9voYuZt9sXFXq8a84YcWd1F83a_n5D7i68_Zt_yq5v55ezsKm-Y5CqXQhpe16KwdfKzGhQvasbBAJeS64Vd0EKWHEQJDS0YWzDLQDbSgLJC8Lo8IZ9G33Xwj4OJPS5dbEzX6ZXxQ0SZni2oLBP48R-w9UNIk0dUSlHGS0UTpEaoCT7GYCyug1vqsEUKuEsUW9yFhbuwcJcoPiWKmyR9v_cf6qVZPAv3ESbg8wj8cZ3Z_rcxnl_eXKdT0r8b9W1MuR_0pai4fBo9H9vpA8zm0NbhNwpZSo4_v8_x4eIW5kJVOEv8h5G32qP-FVzE-7sCKE_3MpVMy7-3_KPx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888145381</pqid></control><display><type>article</type><title>Biplots for Multifactorial Analysis of Distance</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><source>SPORTDiscus with Full Text</source><creator>Krzanowski, W. J.</creator><creatorcontrib>Krzanowski, W. J.</creatorcontrib><description>Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure, but do not accord with MANOVA assumptions for their analysis. One way forward is to calculate the matrix of dissimilarities or distances between every pair of individuals, and then to conduct an analysis of distance on the resulting data. Various metric scaling plots can be used to interpret the results of the analysis. However, developments to date of this approach have focused mainly on the individuals in the sample, and little attention has been paid to the assessment of influence of the original variables on the results. The present article attempts to rectify this omission. We discuss the inclusion of biplots on all forms of metric scaling representations in the analysis of distance. Exact biplots will often be nonlinear so we propose a simple linear approximation, and contrast it with other simple linear possibilities. An example from ecology illustrates the methodology.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.0006-341X.2004.00198.x</identifier><identifier>PMID: 15180679</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K: Blackwell Publishing</publisher><subject>Analysis of variance ; Biometrics ; Biometry ; Coordinate systems ; data collection ; Data Interpretation, Statistical ; Ecology ; Ecology - statistics &amp; numerical data ; Eigenvalues ; factor analysis ; Factorial experiments ; Factorials ; Linear Models ; MANOVA ; Marine Biology - statistics &amp; numerical data ; Marine ecology ; Mathematical vectors ; Matrices ; Models, Statistical ; Multivariate Analysis ; Ordination ; Principal components analysis ; Principal coordinate analysis ; Sums of squares</subject><ispartof>Biometrics, 2004-06, Vol.60 (2), p.517-524</ispartof><rights>Copyright 2004 The International Biometric Society</rights><rights>Copyright Blackwell Publishing Ltd. Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3</citedby><cites>FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695781$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695781$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15180679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krzanowski, W. J.</creatorcontrib><title>Biplots for Multifactorial Analysis of Distance</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure, but do not accord with MANOVA assumptions for their analysis. One way forward is to calculate the matrix of dissimilarities or distances between every pair of individuals, and then to conduct an analysis of distance on the resulting data. Various metric scaling plots can be used to interpret the results of the analysis. However, developments to date of this approach have focused mainly on the individuals in the sample, and little attention has been paid to the assessment of influence of the original variables on the results. The present article attempts to rectify this omission. We discuss the inclusion of biplots on all forms of metric scaling representations in the analysis of distance. Exact biplots will often be nonlinear so we propose a simple linear approximation, and contrast it with other simple linear possibilities. An example from ecology illustrates the methodology.</description><subject>Analysis of variance</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Coordinate systems</subject><subject>data collection</subject><subject>Data Interpretation, Statistical</subject><subject>Ecology</subject><subject>Ecology - statistics &amp; numerical data</subject><subject>Eigenvalues</subject><subject>factor analysis</subject><subject>Factorial experiments</subject><subject>Factorials</subject><subject>Linear Models</subject><subject>MANOVA</subject><subject>Marine Biology - statistics &amp; numerical data</subject><subject>Marine ecology</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Models, Statistical</subject><subject>Multivariate Analysis</subject><subject>Ordination</subject><subject>Principal components analysis</subject><subject>Principal coordinate analysis</subject><subject>Sums of squares</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkU9vEzEQxS1ERUPhGyBYceC26XjX__bAoQ00VGqp1FLR28i7sZGXTZzauyL59jjdKJU44Ys9mt97Hj8TklGY0rRO2ykAiLxk9GFaALBU0kpNNy_IhHJGc2AFvCSTA3RMXsfYprLiULwix5RTBUJWE3J67tad72Nmfciuh653Vje9D0532dlKd9voYuZt9sXFXq8a84YcWd1F83a_n5D7i68_Zt_yq5v55ezsKm-Y5CqXQhpe16KwdfKzGhQvasbBAJeS64Vd0EKWHEQJDS0YWzDLQDbSgLJC8Lo8IZ9G33Xwj4OJPS5dbEzX6ZXxQ0SZni2oLBP48R-w9UNIk0dUSlHGS0UTpEaoCT7GYCyug1vqsEUKuEsUW9yFhbuwcJcoPiWKmyR9v_cf6qVZPAv3ESbg8wj8cZ3Z_rcxnl_eXKdT0r8b9W1MuR_0pai4fBo9H9vpA8zm0NbhNwpZSo4_v8_x4eIW5kJVOEv8h5G32qP-FVzE-7sCKE_3MpVMy7-3_KPx</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Krzanowski, W. J.</creator><general>Blackwell Publishing</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200406</creationdate><title>Biplots for Multifactorial Analysis of Distance</title><author>Krzanowski, W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis of variance</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Coordinate systems</topic><topic>data collection</topic><topic>Data Interpretation, Statistical</topic><topic>Ecology</topic><topic>Ecology - statistics &amp; numerical data</topic><topic>Eigenvalues</topic><topic>factor analysis</topic><topic>Factorial experiments</topic><topic>Factorials</topic><topic>Linear Models</topic><topic>MANOVA</topic><topic>Marine Biology - statistics &amp; numerical data</topic><topic>Marine ecology</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Models, Statistical</topic><topic>Multivariate Analysis</topic><topic>Ordination</topic><topic>Principal components analysis</topic><topic>Principal coordinate analysis</topic><topic>Sums of squares</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krzanowski, W. J.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzanowski, W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biplots for Multifactorial Analysis of Distance</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2004-06</date><risdate>2004</risdate><volume>60</volume><issue>2</issue><spage>517</spage><epage>524</epage><pages>517-524</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure, but do not accord with MANOVA assumptions for their analysis. One way forward is to calculate the matrix of dissimilarities or distances between every pair of individuals, and then to conduct an analysis of distance on the resulting data. Various metric scaling plots can be used to interpret the results of the analysis. However, developments to date of this approach have focused mainly on the individuals in the sample, and little attention has been paid to the assessment of influence of the original variables on the results. The present article attempts to rectify this omission. We discuss the inclusion of biplots on all forms of metric scaling representations in the analysis of distance. Exact biplots will often be nonlinear so we propose a simple linear approximation, and contrast it with other simple linear possibilities. An example from ecology illustrates the methodology.</abstract><cop>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K</cop><pub>Blackwell Publishing</pub><pmid>15180679</pmid><doi>10.1111/j.0006-341X.2004.00198.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2004-06, Vol.60 (2), p.517-524
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_72006173
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online; SPORTDiscus with Full Text
subjects Analysis of variance
Biometrics
Biometry
Coordinate systems
data collection
Data Interpretation, Statistical
Ecology
Ecology - statistics & numerical data
Eigenvalues
factor analysis
Factorial experiments
Factorials
Linear Models
MANOVA
Marine Biology - statistics & numerical data
Marine ecology
Mathematical vectors
Matrices
Models, Statistical
Multivariate Analysis
Ordination
Principal components analysis
Principal coordinate analysis
Sums of squares
title Biplots for Multifactorial Analysis of Distance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biplots%20for%20Multifactorial%20Analysis%20of%20Distance&rft.jtitle=Biometrics&rft.au=Krzanowski,%20W.%20J.&rft.date=2004-06&rft.volume=60&rft.issue=2&rft.spage=517&rft.epage=524&rft.pages=517-524&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.0006-341X.2004.00198.x&rft_dat=%3Cjstor_proqu%3E3695781%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4758-767e5bb62fbfacfa0852b450e05775adfd127350630c1244d4f407c7e08f665b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=888145381&rft_id=info:pmid/15180679&rft_jstor_id=3695781&rfr_iscdi=true