Loading…
Computational Insights on the Challenges for Polymerizing Polar Monomers
Taking Pd di-imine catalysts as an example, we use first principles density functional theory (B3LYP/6-31G*) to investigate the chain propagation steps for polymerization of polar monomers. We start with the complex formed from insertion of ethylene into the polymer chain and consider insertion into...
Saved in:
Published in: | Journal of the American Chemical Society 2002-08, Vol.124 (34), p.10198-10210 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Taking Pd di-imine catalysts as an example, we use first principles density functional theory (B3LYP/6-31G*) to investigate the chain propagation steps for polymerization of polar monomers. We start with the complex formed from insertion of ethylene into the polymer chain and consider insertion into the Pd−C bond for each of four polar monomers: methyl acrylate, vinyl acetate, vinyl chloride, and acrylonitrile. We find 2,1-insertion is favored in each case (by 3 to 5 kcal/mol), resulting in a product with a strong interaction of the polar group for the growing polymer chain with the metal. Next, we insert another unit of the same polar monomer or an ethylene unit (except for acrylonitrile). We optimize the structures for all important intermediates and transition states using a continuum dielectric to account for solvation effects. These studies pinpoint the critical difficulties in designing catalysts to polymerize polar monomers. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja0157705 |