Loading…
Auditory temporal resolution in birds: discrimination of harmonic complexes
The ability of three species of birds to discriminate among selected harmonic complexes with fundamental frequencies varying from 50 to 1000 Hz was examined in behavioral experiments. The stimuli were synthetic harmonic complexes with waveform shapes altered by component phase selection, holding spe...
Saved in:
Published in: | The Journal of the Acoustical Society of America 2002-08, Vol.112 (2), p.748-759 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-2088d6d55a298c8766bfdee8713b76b00f660da2a6e2cae0fe8e476dd63d677b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-2088d6d55a298c8766bfdee8713b76b00f660da2a6e2cae0fe8e476dd63d677b3 |
container_end_page | 759 |
container_issue | 2 |
container_start_page | 748 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 112 |
creator | Dooling, Robert J Leek, Marjorie R Gleich, Otto Dent, Micheal L |
description | The ability of three species of birds to discriminate among selected harmonic complexes with fundamental frequencies varying from 50 to 1000 Hz was examined in behavioral experiments. The stimuli were synthetic harmonic complexes with waveform shapes altered by component phase selection, holding spectral and intensive information constant. Birds were able to discriminate between waveforms with randomly selected component phases and those with all components in cosine phase, as well as between positive and negative Schroeder-phase waveforms with harmonic periods as short as 1-2 ms. By contrast, human listeners are unable to make these discriminations at periods less than about 3-4 ms. Electrophysiological measures, including cochlear microphonic and compound action potential measurements to the same stimuli used in behavioral tests, showed differences between birds and gerbils paralleling, but not completely accounting for, the psychophysical differences observed between birds and humans. It appears from these data that birds can hear the fine temporal structure in complex waveforms over very short periods. These data show birds are capable of more precise temporal resolution for complex sounds than is observed in humans and perhaps other mammals. Physiological data further show that at least part of the mechanisms underlying this high temporal resolving power resides at the peripheral level of the avian auditory system. |
doi_str_mv | 10.1121/1.1494447 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72018787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18497321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-2088d6d55a298c8766bfdee8713b76b00f660da2a6e2cae0fe8e476dd63d677b3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rp68A9IToKHrvlqknpbFr9wwYueS9pMMdI2NWnB_fcb3QWPModhmGde3nkRuqRkSSmjt3RJRSGEUEdoTnNGMp0zcYzmhBCaiULKGTqL8TONuebFKZqlIy1JLuboZTVZN_qwxSN0gw-mxQGib6fR-R67Hlcu2HiHrYt1cJ3rze_CN_jDhM73rsa174YWviGeo5PGtBEuDn2B3h_u39ZP2eb18Xm92mQ1V3rMGNHaSpvnhhW61krKqrEAWlFeKVkR0khJrGFGAqsNkAY0CCWtldxKpSq-QNd73SH4rwniWHbJHbSt6cFPsVSMUK20-hekWhSKM5rAmz1YBx9jgKYc0rMmbEtKyp-Iy1T7iBN7dRCdqg7sH3nIlO8ASIp2hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18497321</pqid></control><display><type>article</type><title>Auditory temporal resolution in birds: discrimination of harmonic complexes</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Dooling, Robert J ; Leek, Marjorie R ; Gleich, Otto ; Dent, Micheal L</creator><creatorcontrib>Dooling, Robert J ; Leek, Marjorie R ; Gleich, Otto ; Dent, Micheal L</creatorcontrib><description>The ability of three species of birds to discriminate among selected harmonic complexes with fundamental frequencies varying from 50 to 1000 Hz was examined in behavioral experiments. The stimuli were synthetic harmonic complexes with waveform shapes altered by component phase selection, holding spectral and intensive information constant. Birds were able to discriminate between waveforms with randomly selected component phases and those with all components in cosine phase, as well as between positive and negative Schroeder-phase waveforms with harmonic periods as short as 1-2 ms. By contrast, human listeners are unable to make these discriminations at periods less than about 3-4 ms. Electrophysiological measures, including cochlear microphonic and compound action potential measurements to the same stimuli used in behavioral tests, showed differences between birds and gerbils paralleling, but not completely accounting for, the psychophysical differences observed between birds and humans. It appears from these data that birds can hear the fine temporal structure in complex waveforms over very short periods. These data show birds are capable of more precise temporal resolution for complex sounds than is observed in humans and perhaps other mammals. Physiological data further show that at least part of the mechanisms underlying this high temporal resolving power resides at the peripheral level of the avian auditory system.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.1494447</identifier><identifier>PMID: 12186054</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Attention ; Canaries ; Cochlear Microphonic Potentials ; Female ; Gerbillinae ; Male ; Parrots ; Pitch Discrimination ; Psychoacoustics ; Songbirds ; Sound Spectrography ; Species Specificity ; Time Perception</subject><ispartof>The Journal of the Acoustical Society of America, 2002-08, Vol.112 (2), p.748-759</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-2088d6d55a298c8766bfdee8713b76b00f660da2a6e2cae0fe8e476dd63d677b3</citedby><cites>FETCH-LOGICAL-c378t-2088d6d55a298c8766bfdee8713b76b00f660da2a6e2cae0fe8e476dd63d677b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12186054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dooling, Robert J</creatorcontrib><creatorcontrib>Leek, Marjorie R</creatorcontrib><creatorcontrib>Gleich, Otto</creatorcontrib><creatorcontrib>Dent, Micheal L</creatorcontrib><title>Auditory temporal resolution in birds: discrimination of harmonic complexes</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>The ability of three species of birds to discriminate among selected harmonic complexes with fundamental frequencies varying from 50 to 1000 Hz was examined in behavioral experiments. The stimuli were synthetic harmonic complexes with waveform shapes altered by component phase selection, holding spectral and intensive information constant. Birds were able to discriminate between waveforms with randomly selected component phases and those with all components in cosine phase, as well as between positive and negative Schroeder-phase waveforms with harmonic periods as short as 1-2 ms. By contrast, human listeners are unable to make these discriminations at periods less than about 3-4 ms. Electrophysiological measures, including cochlear microphonic and compound action potential measurements to the same stimuli used in behavioral tests, showed differences between birds and gerbils paralleling, but not completely accounting for, the psychophysical differences observed between birds and humans. It appears from these data that birds can hear the fine temporal structure in complex waveforms over very short periods. These data show birds are capable of more precise temporal resolution for complex sounds than is observed in humans and perhaps other mammals. Physiological data further show that at least part of the mechanisms underlying this high temporal resolving power resides at the peripheral level of the avian auditory system.</description><subject>Animals</subject><subject>Attention</subject><subject>Canaries</subject><subject>Cochlear Microphonic Potentials</subject><subject>Female</subject><subject>Gerbillinae</subject><subject>Male</subject><subject>Parrots</subject><subject>Pitch Discrimination</subject><subject>Psychoacoustics</subject><subject>Songbirds</subject><subject>Sound Spectrography</subject><subject>Species Specificity</subject><subject>Time Perception</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMo7rp68A9IToKHrvlqknpbFr9wwYueS9pMMdI2NWnB_fcb3QWPModhmGde3nkRuqRkSSmjt3RJRSGEUEdoTnNGMp0zcYzmhBCaiULKGTqL8TONuebFKZqlIy1JLuboZTVZN_qwxSN0gw-mxQGib6fR-R67Hlcu2HiHrYt1cJ3rze_CN_jDhM73rsa174YWviGeo5PGtBEuDn2B3h_u39ZP2eb18Xm92mQ1V3rMGNHaSpvnhhW61krKqrEAWlFeKVkR0khJrGFGAqsNkAY0CCWtldxKpSq-QNd73SH4rwniWHbJHbSt6cFPsVSMUK20-hekWhSKM5rAmz1YBx9jgKYc0rMmbEtKyp-Iy1T7iBN7dRCdqg7sH3nIlO8ASIp2hQ</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Dooling, Robert J</creator><creator>Leek, Marjorie R</creator><creator>Gleich, Otto</creator><creator>Dent, Micheal L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7X8</scope><scope>8BM</scope></search><sort><creationdate>20020801</creationdate><title>Auditory temporal resolution in birds: discrimination of harmonic complexes</title><author>Dooling, Robert J ; Leek, Marjorie R ; Gleich, Otto ; Dent, Micheal L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-2088d6d55a298c8766bfdee8713b76b00f660da2a6e2cae0fe8e476dd63d677b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Attention</topic><topic>Canaries</topic><topic>Cochlear Microphonic Potentials</topic><topic>Female</topic><topic>Gerbillinae</topic><topic>Male</topic><topic>Parrots</topic><topic>Pitch Discrimination</topic><topic>Psychoacoustics</topic><topic>Songbirds</topic><topic>Sound Spectrography</topic><topic>Species Specificity</topic><topic>Time Perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dooling, Robert J</creatorcontrib><creatorcontrib>Leek, Marjorie R</creatorcontrib><creatorcontrib>Gleich, Otto</creatorcontrib><creatorcontrib>Dent, Micheal L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dooling, Robert J</au><au>Leek, Marjorie R</au><au>Gleich, Otto</au><au>Dent, Micheal L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auditory temporal resolution in birds: discrimination of harmonic complexes</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2002-08-01</date><risdate>2002</risdate><volume>112</volume><issue>2</issue><spage>748</spage><epage>759</epage><pages>748-759</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>The ability of three species of birds to discriminate among selected harmonic complexes with fundamental frequencies varying from 50 to 1000 Hz was examined in behavioral experiments. The stimuli were synthetic harmonic complexes with waveform shapes altered by component phase selection, holding spectral and intensive information constant. Birds were able to discriminate between waveforms with randomly selected component phases and those with all components in cosine phase, as well as between positive and negative Schroeder-phase waveforms with harmonic periods as short as 1-2 ms. By contrast, human listeners are unable to make these discriminations at periods less than about 3-4 ms. Electrophysiological measures, including cochlear microphonic and compound action potential measurements to the same stimuli used in behavioral tests, showed differences between birds and gerbils paralleling, but not completely accounting for, the psychophysical differences observed between birds and humans. It appears from these data that birds can hear the fine temporal structure in complex waveforms over very short periods. These data show birds are capable of more precise temporal resolution for complex sounds than is observed in humans and perhaps other mammals. Physiological data further show that at least part of the mechanisms underlying this high temporal resolving power resides at the peripheral level of the avian auditory system.</abstract><cop>United States</cop><pmid>12186054</pmid><doi>10.1121/1.1494447</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2002-08, Vol.112 (2), p.748-759 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_72018787 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Animals Attention Canaries Cochlear Microphonic Potentials Female Gerbillinae Male Parrots Pitch Discrimination Psychoacoustics Songbirds Sound Spectrography Species Specificity Time Perception |
title | Auditory temporal resolution in birds: discrimination of harmonic complexes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auditory%20temporal%20resolution%20in%20birds:%20discrimination%20of%20harmonic%20complexes&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Dooling,%20Robert%20J&rft.date=2002-08-01&rft.volume=112&rft.issue=2&rft.spage=748&rft.epage=759&rft.pages=748-759&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.1494447&rft_dat=%3Cproquest_cross%3E18497321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-2088d6d55a298c8766bfdee8713b76b00f660da2a6e2cae0fe8e476dd63d677b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18497321&rft_id=info:pmid/12186054&rfr_iscdi=true |