Loading…

Ultrastructure of forming enamel in mouse bearing a transgene that disrupts the amelogenin self-assembly domains

The mouse X-chromosomal amelogenin gene promoter was used to drive the expression of mutated amelogenin proteins in vivo. Two different transgenic mouse lines based on deletions to either the amino-terminal (A-domain deletions) or to the carboxyl-region (B-domain deletions) were bred. In the molars...

Full description

Saved in:
Bibliographic Details
Published in:Calcified tissue international 2002-08, Vol.71 (2), p.155-166
Main Authors: Dunglas, C, Septier, D, Paine, M L, Zhu, D H, Snead, M L, Goldberg, M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mouse X-chromosomal amelogenin gene promoter was used to drive the expression of mutated amelogenin proteins in vivo. Two different transgenic mouse lines based on deletions to either the amino-terminal (A-domain deletions) or to the carboxyl-region (B-domain deletions) were bred. In the molars of newborn A-domain deleted transgenic mice the formation of the initial layer of aprismatic enamel was delayed. There were severe structural alterations in the enamel of incisors of newborn mice bearing the A-domain deletion which were not apparent in animals bearing the B-domain deletion. In the A-domain-deleted animals, stippled material accumulated throughout the entire thickness of the forming enamel apparently causing a disruption of the normal rod-to-inter-rod relationship. This stippled material was likened to and interpreted as being groupings of amelogenin nanospheres. In the B-domain-deleted animals the stippled material was detected only in minute defects of the forming enamel. These data suggest significant differences in nanosphere assembly properties for animals bearing either the A-domain or the B-domain-deleted transgene. The present in vivo experimental approach suggests that at early stages of enamel formation, the A-domain plays a greater role than does the B-domain in amelogenin self-assembly, and consequently in enamel architecture and structure.
ISSN:0171-967X
1432-0827
DOI:10.1007/s00223-001-2116-5