Loading…

Ebony protein in the Drosophila nervous system: Optic neuropile expression in glial cells

The Drosophila ebony mutation (Bridges and Morgan, [1923] Publs Carnegie Inst Wash 327:50) reveals a pleiotropic phenotype with cuticular and behavioral defects. To understand Ebony function in the nervous system, particularly in transmission of the visual signal, it is essential to know the cell ty...

Full description

Saved in:
Bibliographic Details
Published in:Journal of comparative neurology (1911) 2002-10, Vol.452 (1), p.93-102
Main Authors: Richardt, Arnd, Rybak, Jürgen, Störtkuhl, Klemens F., Meinertzhagen, Ian A., Hovemann, Bernhard T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Drosophila ebony mutation (Bridges and Morgan, [1923] Publs Carnegie Inst Wash 327:50) reveals a pleiotropic phenotype with cuticular and behavioral defects. To understand Ebony function in the nervous system, particularly in transmission of the visual signal, it is essential to know the cell type and temporal characteristics of its expression throughout development. Therefore, we raised an antiserum against an Ebony peptide to detect the protein in whole‐mount and slice preparations of Drosophila. Attention was focused on ebony expression in the adult optic neuropiles of the fly. Colocalization of Ebony with neuronal or glial cell markers in frozen sections showed non‐neuronal expression of ebony in the lamina and medulla neuropiles. Furthermore, colocalization with glial cell markers demonstrated glial expression of ebony in epithelial glia of the lamina and neuropile glia of the distal medulla. This finding was confirmed for the lamina epithelial glia by electron microscopic examination of immunolabeling by using the diaminobenzidine method. These glia have in common that they match the two sites of histamine release from the compound eye's photoreceptors. Possible ways in which the biochemical activity of Ebony might function with respect to histamine release are considered. J. Comp. Neurol. 452:93–102, 2002. © 2002 Wiley‐Liss, Inc.
ISSN:0021-9967
1096-9861
DOI:10.1002/cne.10360