Loading…

Dynamics of Hydrogen Bond Desolvation in Protein Folding

As proteins fold, a progressive structuring, immobilization and eventual exclusion of water surrounding backbone hydrogen bonds takes place. This process turns hydrogen bonds into major determinants of the folding pathway and compensates for the penalty of desolvation of the backbone polar groups. T...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2002-08, Vol.321 (4), p.659-675
Main Authors: Fernández, Ariel, Sosnick, Tobin R., Colubri, Andrés
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As proteins fold, a progressive structuring, immobilization and eventual exclusion of water surrounding backbone hydrogen bonds takes place. This process turns hydrogen bonds into major determinants of the folding pathway and compensates for the penalty of desolvation of the backbone polar groups. Taken as an average over all hydrogen bonds in a native fold, this extent of protection is found to be nearly ubiquitous. It is dynamically crucial, determining a constraint in the long-time limit behavior of coarse-grained ab initio simulations. Furthermore, an examination of one of the longest available (1 μs) all-atom simulations with explicit solvent reveals that this average extent of protection is a constant of motion for the folding trajectory. We propose how such a stabilization is best achieved by clustering five hydrophobes around the backbone hydrogen bonds, an arrangement that yields the optimal stabilization. Our results support and clarify the view that hydrophobic surface burial should be commensurate with hydrogen-bond formation and enable us to define a basic desolvation motif inherent to structure and folding dynamics.
ISSN:0022-2836
1089-8638
DOI:10.1016/S0022-2836(02)00679-4