Loading…

Physiological and pathological caspase cleavage of the neuronal RasGEF GRASP-1 as detected using a cleavage site-specific antibody

Caspases are proteases involved in various physiological and pathological processes in the nervous system, including development and pathogenesis. GRASP-1 is a recently identified neuronal substrate of caspase-3-subfamily caspases. It is a Ras-guanine nucleotide exchange factor (RasGEF) that interac...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 2002-01, Vol.114 (1), p.217-227
Main Authors: Ye, B, Sugo, N, Hurn, P.D, Huganir, R.L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Caspases are proteases involved in various physiological and pathological processes in the nervous system, including development and pathogenesis. GRASP-1 is a recently identified neuronal substrate of caspase-3-subfamily caspases. It is a Ras-guanine nucleotide exchange factor (RasGEF) that interacts with the glutamate receptor interacting protein (GRIP). This α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor/GRIP protein complex has been proposed to be involved in AMPA receptor synaptic targeting. The caspase-3 cleavage of GRASP-1 separates the N-terminal RasGEF catalytic domain from the C-terminal GRIP-interacting region, potentially disrupting regulation of the RasGEF activity by GRIP. To examine the regulation and regional distribution of the caspase-3 cleavage of GRASP-1 in vivo, we generated a cleavage site-specific antibody, termed CGP, against the cleaved N-terminal fragment of GRASP-1. Using this antibody, we have examined the caspase cleavage of GRASP-1 during postnatal development and following ischemia in mice. We found that caspase cleavage of GRASP-1 occurs in specific brain regions in a time-dependent manner during development and ischemia. This data provides an important account of the brain areas that might require caspase-3 activity in postnatal development and ischemic damage, which has not been documented. It also demonstrates that the CGP antibody is a powerful tool for studying neuronal activity of the caspase-3-subfamily caspases in vivo.
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(02)00142-2