Loading…

Syntaxins 13 and 7 Function at Distinct Steps During Phagocytosis

The phagosome is a dynamic organelle that undergoes progressive changes to acquire the machinery required to kill and degrade internalized foreign particles. This maturation process involves sequential interaction of newly formed phagosomes with several components of the endocytic pathway. The prote...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2002-09, Vol.169 (6), p.3250-3256
Main Authors: Collins, Richard F, Schreiber, Alan D, Grinstein, Sergio, Trimble, William S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The phagosome is a dynamic organelle that undergoes progressive changes to acquire the machinery required to kill and degrade internalized foreign particles. This maturation process involves sequential interaction of newly formed phagosomes with several components of the endocytic pathway. The proteins that mediate the ordered fusion of endosomes and lysosomes with the phagosome are not known. In this study, we investigated the possible role of syntaxins present in the endo/lysosomal pathway in directing phagosomal maturation. We show that in phagocytic cells syntaxin 13 is localized to the recycling endosome compartment, while syntaxin 7 is found in late endosomes/lysosomes. Both proteins are recruited to the phagosome, but syntaxin 13 is acquired earlier and rapidly recycles off the phagosome, while syntaxin 7 is recruited later and continues to accumulate throughout the maturation process. Overexpression of truncated (cytosolic) forms of syntaxin 13 or 7 had no effect on phagocytosis, but exerted an inhibitory effect on phagosomal maturation. These results indicate that syntaxins 13 and 7 are both required for interaction of endosomes and/or lysosomes with the phagosome, but play distinct roles in the maturation process.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.169.6.3250