Loading…

The non-immunosuppressive immunophilin ligand GPI-1046 potently stimulates regenerating axon growth from adult mouse dorsal root ganglia cultured in Matrigel

We used explant cultures of adult mouse dorsal root ganglia with spinal nerve attached growing in Matrigel to assess the effects of the non-immunosuppressive immunophilin ligand GPI-1046 [Snyder et al. (1998) TIPS 19, 21–26] on the growth rate of regenerating sensory axons and found a potent stimula...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 2002-01, Vol.114 (3), p.601-609
Main Authors: Khan, Z, Ferrari, G, Kasper, M, Tonge, D.A, Steiner, J.P, Hamilton, G.S, Gordon-Weeks, P.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We used explant cultures of adult mouse dorsal root ganglia with spinal nerve attached growing in Matrigel to assess the effects of the non-immunosuppressive immunophilin ligand GPI-1046 [Snyder et al. (1998) TIPS 19, 21–26] on the growth rate of regenerating sensory axons and found a potent stimulation of axon growth. In these explant cultures, naked, unfasciculated axons emerge from the cut end of the spinal nerve and continue to grow in the Matrigel for up to eight days [Tonge et al. (1996) Neuroscience 73, 541–551]. Some axons are entirely smooth whilst others show prominent varicosities. Some of the former express the phosphorylated neurofilament epitope recognised by monoclonal antibody RT97, a marker for large calibre, myelinated axons, whilst the latter express calcitonin gene-related peptide, predominantly a marker for unmyelinated, and small diameter myelinated sensory axons. Many of the axons in these cultures also express the low-affinity neurotrophin receptor p75. GPI-1046 has been shown to have striking stimulatory effects on embryonic primary sensory axons growing in vitro and it was therefore of interest to see whether it could also enhance regenerating sensory axon growth from the adult ganglia in our cultures. GPI-1046 potently stimulated axon growth in our cultures in a dose-dependent manner. The stimulatory effect was not dependent on the class of sensory axon. These observations show that GPI-1046 is a potent stimulator of regenerating axons from adult, primary sensory neurones. The cellular site of action of GPI-1046 is unknown. To distinguish between a direct effect of the drug on neurones and an indirect effect we compared the effects of GPI-1046 on explant and dissociated cultures. In confirmation of previous results, we found that GPI-1046 potently stimulated axon outgrowth from explants of embryonic chick dorsal root ganglia. However, the drug was without effect on dissociated embryonic dorsal root ganglion neurones, suggesting that non-neuronal cells are important for axon growth stimulation.
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(02)00314-7